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Genome-wide cell-free DNA fragmentation in 
patients with cancer
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Cell-free DNA in the blood provides a non-invasive diagnostic 
avenue for patients with cancer1. However, characteristics of 
the origins and molecular features of cell-free DNA are poorly 
understood. Here we developed an approach to evaluate 
fragmentation patterns of cell-free DNA across the genome, and 
found that profiles of healthy individuals reflected nucleosomal 
patterns of white blood cells, whereas patients with cancer had 
altered fragmentation profiles. We used this method to analyse 
the fragmentation profiles of 236 patients with breast, colorectal, 
lung, ovarian, pancreatic, gastric or bile duct cancer and 245 
healthy individuals. A machine learning model that incorporated 
genome-wide fragmentation features had sensitivities of detection 
ranging from 57% to more than 99% among the seven cancer types 
at 98% specificity, with an overall area under the curve value of 
0.94. Fragmentation profiles could be used to identify the tissue 
of origin of the cancers to a limited number of sites in 75% of 
cases. Combining our approach with mutation-based cell-free 
DNA analyses detected 91% of patients with cancer. The results 
of these analyses highlight important properties of cell-free DNA 
and provide a proof-of-principle approach for the screening, early 
detection and monitoring of human cancer.

Much of the morbidity and mortality of human cancers world-
wide results from late diagnosis when therapeutic intervention is less 
effective2,3. Unfortunately, clinically proven biomarkers that can be 
used to broadly diagnose and treat patients are not widely availa-
ble4. Recent analyses of circulating cell-free DNA (cfDNA) suggest 
that approaches using tumour-specific alterations may provide new 
opportunities for early diagnosis, but not all patients have detectable 
changes5–8. Whole-genome sequencing (WGS) of cfDNA can iden-
tify chromosomal abnormalities in patients with cancer but detecting 
such alterations may be challenging owing to the small number of 
abnormal chromosomal changes9–12. Analyses of the size of fragments 
of cfDNA have been contradictory, indicating both increases13–15 and 
decreases in the overall distribution of cfDNA12,16,17–19. Recent stud-
ies have suggested that size selection of small cfDNA can increase 
enrichment of circulating tumour DNA in patients with late-stage 
cancer17. Nucleosome positions18,20, patterns near transcription start 
sites20,21, and the end positions of cfDNA22 may be altered in cancer, 
but the sequencing needed to identify nucleosomes is impractical for 
routine analyses.

Conceptually, the sensitivity of any cfDNA approach depends on the 
number of alterations examined as well as the technical and biological 
limitations of detecting such changes. As a typical blood sample con-
tains approximately 2,000 genome equivalents of cfDNA per millilitre 
of plasma5, the theoretical limit of detection of a single alteration can 
be no better than one in a few thousand mutant to wild-type mole-
cules. We hypothesized that the detection of a larger number of alter-
ations in the genome may be more sensitive for detecting cancer in 
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Fig. 1 | Schematic of DELFI approach. Blood is collected from healthy 
individuals and patients with cancer. cfDNA is extracted from plasma, 
processed into sequencing libraries, examined by WGS, mapped to the 
genome, and analysed to determine cfDNA fragmentation profiles across 
the genome. Machine learning is used to categorize whether individuals 
have cancer and identify the tumour tissue of origin.
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the circulation. Monte Carlo simulations showed that increasing the 
number of abnormalities detected from a few to tens or hundreds can 
improve the limit of detection, similar to recent analyses of methylation 
changes in cfDNA23 (Extended Data Fig. 1a).

We developed an approach called ‘DNA evaluation of fragments for 
early interception’ (DELFI) (Fig. 1) to detect a large number of abnor-
malities in cfDNA by genome-wide analysis of fragmentation patterns. 
The method is based on low-coverage WGS of isolated cfDNA. Mapped 
sequences are analysed in non-overlapping windows that cover the 
genome. Conceptually, windows may range in size from thousands to 
millions of bases, resulting in hundreds to thousands of windows in 
the genome. We used 5-megabase (Mb) windows to evaluate cfDNA 
fragmentation patterns as this provided more than 20,000 reads per 
window at 1–2× genome coverage. Within each window, we examined 
the coverage and size distribution of cfDNA fragments in healthy and 
cancer populations (Supplementary Table 1). The genome-wide pattern 
from an individual can be compared to reference populations to deter-
mine whether the pattern is likely to be healthy or cancer-derived. As 
genome-wide profiles may reveal differences associated with specific 
tissues, these patterns may also indicate the tissue source of cfDNA.

We focused on fragmentation size of cfDNA as we found that 
cancer-derived cfDNA may be more variable in length than cfDNA 
from non-cancer cells. We initially examined cfDNA from targeted 
regions captured and sequenced at high coverage from patients with 
breast, colorectal, lung or ovarian cancer5 (Supplementary Tables 1–3).  
Analyses of loci containing 165 tumour-specific alterations from 
81 patients revealed an average absolute difference of 6.5 base pairs 
(bp; 95% confidence interval (CI), 5.4–7.6 bp) between the lengths of 
median mutant and wild-type cfDNA fragments, with mutant cfDNA 
fragments ranging from 30 bases smaller to 47 bases larger (Extended 
Data Fig. 1b, Supplementary Table 3). The GC content was similar for 
mutated and non-mutated fragments, with no correlation between 
GC content and fragment length (Extended Data Fig. 1c, d). Analyses 
of 44 germline alterations from 38 patients identified median cfDNA 
size differences of less than 1 bp between different alleles (Extended 
Data Fig. 2a, Supplementary Table 3). For 41 alterations related to 

clonal haematopoiesis5, there were no significant differences between 
cfDNA fragments containing such alterations and wild-type fragments 
(Extended Data Fig. 2b, Supplementary Table 3). Overall, the lengths of 
cancer-derived cfDNA fragments were more variable than non-cancer 
cfDNA (P < 0.001, variance ratio test). We hypothesized that these 
differences may reflect changes in chromatin structure as well as other 
genomic and epigenomic abnormalities in cancer24,25, and that cfDNA 
fragmentation in a position-specific manner could serve as a biomarker 
for cancer detection.

As targeted sequencing analyses a limited number of loci, we inves-
tigated whether genome-wide analyses would detect additional abnor-
malities from cfDNA fragmentation. In a pilot analysis, we isolated 
cfDNA from around 4 ml of plasma from 8 patients with stage I–III 
lung cancer and 30 healthy individuals (Supplementary Tables 1, 4, 5), 
and performed WGS at approximately 9× coverage (Supplementary 
Table 4). As expected12,18,19, the median overall lengths of fragments of 
cfDNA from healthy individuals were larger than those from patients 
with cancer (167.3 bp and 163.8, respectively, P < 0.01, Welch’s t-test) 
(Supplementary Table 5). To examine differences in fragment size 
and coverage in a position-dependent manner across the genome, we 
mapped fragments to their genomic origin and evaluated fragment 
lengths in 504 windows of 5 Mb, covering approximately 2.6 Gb of 
the genome. For each window, we determined the fraction of small 
cfDNA fragments (100–150 bp) to larger cfDNA fragments (151–220 
bp) and overall coverage to obtain genome-wide fragmentation profiles 
for each sample.

We found that healthy individuals had similar genome-wide frag-
mentation profiles (Fig. 2a, b, Extended Data Fig. 3a). To examine the 
origins of cfDNA fragmentation patterns, we isolated and nuclease- 
treated nuclei from lymphocytes of two healthy individuals to obtain 
nucleosomal DNA fragments. Healthy cfDNA patterns were highly 
correlated to lymphocyte nucleosomal DNA fragmentation profiles 
and nucleosome distances (Fig. 2b, c, Extended Data Fig. 3b, c). Median 
distances between nucleosomes in lymphocytes were correlated to 
high-throughput sequencing chromosome conformation capture (Hi-
C) open (A) and closed (B) compartments of lymphoblastoid cells26,27 
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Fig. 2 | Aberrant cfDNA fragmentation profiles in patients with 
cancer. a, Genome-wide cfDNA fragmentation profiles (defined as 
the ratio of short to long fragments) from approximately 9× WGS are 
shown in 5-Mb bins for 30 healthy individuals (top) and 8 patients with 
lung cancer (bottom). b, Analyses of healthy cfDNA (top), lung cancer 
cfDNA (middle), and healthy lymphocyte (bottom) fragmentation 
profiles from chromosome 1 at 1-Mb resolution. Healthy lymphocyte 

profiles were scaled with a standard deviation equal to that of the median 
healthy cfDNA profiles. c, Smoothed median distances between adjacent 
nucleosomes centred at zero using 100 kb bins from healthy cfDNA (top) 
and nuclease-digested healthy lymphocytes (middle) are depicted together 
with the first eigenvector for the genome contact matrix from Hi-C 
analyses of lymphoblastoid cells27 (bottom).
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(Fig. 2c). These analyses suggest that fragmentation patterns of normal 
cfDNA are the result of nucleosomal DNA patterns that reflect the 
chromatin structure of normal blood cells.

In contrast to healthy cfDNA, patients with cancer had several dis-
tinct genomic differences with increases and decreases in fragment 
sizes at different regions (Fig. 2a, b). We performed genome-wide 
correlation analyses of the fraction of short to long cfDNA fragments 
for each sample compared to the median fragment length profile of 
healthy individuals, and found that—although cfDNA fragment pro-
files were consistent among healthy individuals (median correlation 
of 0.99)—the median correlation of fragment ratios among patients 
with cancer was 0.84 (P < 0.001, Wilcoxon rank-sum test; Fig. 2a, b, 
Extended Data Fig. 3d, Supplementary Table 5). Similar differences 
were observed when comparing cfDNA fragmentation profiles of 
patients with cancer to fragmentation profiles of healthy lymphocytes 
(Fig. 2c, Extended Data Fig. 3b, c). To account for potential biases 
attributable to GC content, we applied a locally weighted smoother 
and found that differences in fragmentation profiles between healthy 
individuals and patients with cancer remained after this adjust-
ment (median correlation of patients with cancer to healthy = 0.83, 
Supplementary Table 5).

We subsampled WGS data at 9× coverage to approximately 2×, 1×, 
0.5×, 0.2× and 0.1× genome coverage, and determined that altered 
fragmentation profiles from patients with cancer were identified even 
at 0.5× coverage (Extended Data Fig. 3e, f). On the basis of these obser-
vations, we performed WGS at 1–2× coverage to evaluate whether 
fragmentation profiles may change during the course of therapy28,29. 
We evaluated cfDNA from 19 patients with non-small-cell lung cancer 

during therapy with anti-EGFR or anti-ERBB2 agents (Supplementary 
Table 6). The degree of abnormality in the fragmentation profiles dur-
ing therapy closely matched levels of EGFR or ERBB2 mutant allele 
fractions29 (Extended Data Fig. 4, Spearman correlation of mutant allele 
fractions to fragmentation profiles = 0.74). These results demonstrate 
that fragmentation analyses may be useful for detecting tumour-de-
rived cfDNA and monitoring patients during treatment.

As cfDNA fragmentation profiles would be expected to reflect both 
epigenomic and genomic alterations, we examined these in a patient 
with known tumour copy number changes. Altered fragmentation pro-
files were present in regions of the genome that were copy-neutral and 
were further affected in regions with copy number changes (Fig. 3a, 
Extended Data Fig. 5a). Position-dependent differences in fragmen-
tation patterns distinguished cancer-derived cfDNA from healthy 
cfDNA, whereas analyses of overall fragment sizes of cfDNA would 
have missed such differences (Extended Data Fig. 5a, b).

We performed WGS at 1–2× coverage of cfDNA from 208 patients 
with cancer, including breast (n = 54), colorectal (n = 27), lung 
(n = 12), ovarian (n = 28), pancreatic (n = 34), gastric (n = 27) or bile 
duct cancer (n = 26), as well as 215 healthy individuals (Supplementary 
Tables 1, 4). All patients with cancer had not undergone previous treat-
ment and most had resectable disease (n = 183). After GC adjustment 
of short and long cfDNA fragment coverage (Extended Data Fig. 6a, b),  
we examined coverage and size characteristics of fragments in win-
dows throughout the genome (Fig. 3b, Supplementary Tables 4, 7). 
Healthy individuals had concordant fragmentation profiles whereas 
patients with cancer had highly variable profiles with decreased cor-
relation to the median healthy profile (Supplementary Table 7). An 
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Fig. 3 | cfDNA fragmentation profiles in healthy individuals and 
patients with cancer. a, Fragmentation profiles (bottom) in the context 
of tumour copy number changes (top) in a patient with colorectal cancer. 
The distribution of segment means and integer copy numbers are shown 
at top right. b, GC-adjusted fragmentation profiles from WGS at 1–2× 
coverage for healthy individuals and patients with cancer are depicted per 

cancer type using 5-Mb windows. The median healthy profile is indicated 
in black and the 98% confidence band is shown in grey. For patients with 
cancer, individual profiles are coloured based on their Pearson correlation 
to the healthy median. c, Windows are indicated in orange if more than 
10% of the cancer samples had a fragment ratio more than three standard 
deviations from the median healthy fragment ratio.
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analysis of commonly altered genomic windows revealed a median of 
60 affected windows across the cancer types analysed, which highlights 
position-dependent alterations in fragmentation of cfDNA (Fig. 3c).

We implemented a gradient tree boosting machine learning model 
to examine whether cfDNA has characteristics of a patient with cancer 
or healthy individual, and estimated performance characteristics of 
this approach by tenfold cross-validation repeated ten times (Extended 
Data Fig. 7a, b). The machine learning model included GC-adjusted 
short and long fragment coverage characteristics in windows through-
out the genome. We also developed a machine learning classifier for 
copy number changes from chromosomal arm features10,11 (Extended 
Data Fig. 8a, Supplementary Table 8) and included mitochondrial copy 
number changes12 (Extended Data Fig. 8b). Using this implementation 
of DELFI, we obtained a score that could be used to classify patients 
as being healthy or having cancer. We detected 152 out of 208 cancer 
patients (73% sensitivity, 95% confidence interval 67–79%), and mis-
classified 4 out of 215 healthy individuals (98% specificity) (Table 1). 
At a threshold of 95% specificity, we detected 80% of patients with 
cancer (95% confidence interval 74–85%), including 79% of patients 
with resectable (stage I–III) disease (145 out of 183) and 82% of 
patients with stage IV disease (18 of 22) (Table 1). Receiver operator 
characteristic analyses for the detection of patients with cancer had an 
area under the curve (AUC) value of 0.94 (95% confidence interval 
0.92–0.96), ranging from 0.86 for pancreatic cancer to at least 0.93 for 
breast, bile duct, colorectal, gastric, lung and ovarian cancers (Fig. 4, 
Extended Data Fig. 9a), with AUC values of at least 0.92 for each stage 
(Extended Data Fig. 9b). To assess the contribution of fragment size 
and coverage across the genome, chromosome arm copy number or 
mitochondrial copy number to the predictive accuracy of the model, 
we implemented the cross-validation procedure to assess performance 
characteristics of these features in isolation. Fragment coverage fea-
tures alone (AUC = 0.94) were nearly identical to the classifier that 
combined all features (AUC = 0.94). By contrast, machine learning 
analyses of changes in chromosomal copy number had lower perfor-
mance (AUC = 0.88) but were still more predictive than copy number 
using individual scores (AUC = 0.78) or mitochondrial copy number 
(AUC = 0.72) (Fig. 4). These results suggest that fragment coverage 
is the major contributor to our classifier, but we have included all fea-
tures in our prediction model as they can be obtained from the same 
WGS data and may contribute in a complementary fashion for cancer 
detection.

As fragmentation profiles reveal regional differences between tissues, 
we used machine learning to identify the tissue of origin of circulating 
tumour DNA. These analyses had a 61% accuracy (95% confidence 

interval 53–67%) that increased to 75% (95% confidence interval 
69–81%) when assigning circulating tumour DNA to one of two sites 
of origin (Extended Data Fig. 9c, d). For all tumour types, the classi-
fication of tissue of origin by DELFI was higher than that by random 
assignment (P < 0.01, binomial test, Extended Data Fig. 9d).

We evaluated whether combining DELFI with mutation detec-
tion in cfDNA5 could increase the sensitivity of cancer detection 
(Extended Data Fig. 10). An evaluation of cases analysed using 
both approaches revealed that 82% (103 out of 126) of patients 
were detected using DELFI, and 66% (83 out of 126) had sequence 
alterations. For cases with mutant allele fractions of less than 1%, 
DELFI detected 80% of cases—including those that were undetecta-
ble using targeted sequencing (Supplementary Table 7). When these 
approaches were used together, the combined sensitivity increased 
to 91% (115 out of 126 patients) with a specificity of 98% (Extended 
Data Fig. 10).

Table 1 | DELFI performance for cancer detection
                  Individuals analysed 95% specificity 98% specificity

Individuals detected Sensitivity (%) 95% CI (%) Individuals detected Sensitivity (%) 95% CI (%)

Healthy 215 10 − − 4 − −

Cancer 208 166 80 74–85 152 73 67–79

  Type Breast 54 38 70 56–82 31 57 43–71

Bile duct 26 23 88 70–98 21 81 61–93

Colorectal 27 22 81 62–94 19 70 50–86

Gastric 27 22 81 62–94 22 81 62–94

Lung 12 12 100 74–100 12 100 74–100

Ovarian 28 25 89 72–98 25 89 72–98

Pancreatic 34 24 71 53–85 22 65 46–80

  Stage I 41 30 73 53–86 28 68 52–82

II 109 85 78 69–85 78 72 62–80

III 33 30 91 76–98 26 79 61–91

IV 22 18 82 60–95 17 77 55–92

X 3 3 100 29–100 3 100 29–100
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Fig. 4 | Detection of cancer using DELFI. Receiver operator 
characteristics for the detection of cancer using cfDNA fragmentation 
profiles and other genome-wide features in a machine learning approach 
are depicted for a cohort of 215 healthy individuals and 208 patients 
with cancer (DELFI, AUC = 0.94), with ≥95% specificity shaded in 
blue. Machine learning analyses of chromosomal arm copy number (Chr 
copy number (ML)), and mitochondrial genome copy number analyses 
(mtDNA) are shown.
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Overall, we have determined that genome-wide fragmentation pro-
files of cfDNA are different between patients with cancer and healthy 
individuals. In patients with cancer, fragmentation patterns in cfDNA 
appear to result from mixtures of nucleosomal DNA from both blood 
and neoplastic cells. Our approach could be further improved through 
recovery of smaller fragments17,30, evaluation of single-stranded librar-
ies18,30,31 or use of alternative technologies. Additionally, PCR-free 
libraries could reduce GC bias and sequencing artefacts18,30,31.

These observations have important implications for non-invasive 
detection of human cancer. DELFI simultaneously analyses tens to 
hundreds of tumour-specific abnormalities from minute amounts of 
cfDNA, overcoming a limitation that has precluded the possibility of 
more-sensitive analyses of cfDNA. These analyses detected a higher 
fraction of patients with cancer than previous methods5–7,12,17, and 
combining DELFI with the detection of sequence alterations in cfDNA 
further increased the sensitivity of detection. As fragmentation pro-
files seem to be related to nucleosomal patterns, DELFI may be useful 
for determining the source of tumour-derived cfDNA, an aspect that 
could be further improved using clinical characteristics, methylation 
changes23 and other diagnostic approaches6. DELFI requires only a 
small amount of whole-genome sequencing, which suggests that this 
approach could be broadly applied for the screening and management 
of patients with cancer.

Online content
Any Methods, including any statements of data availability and Nature Research 
reporting summaries, along with any additional references and Source Data files, 
are available in the online version of the paper at https://doi.org/10.1038/s41586-
019-1272-6.
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Methods
Patient and sample characteristics. Plasma samples from healthy individuals and 
plasma and tissue samples from patients with breast, lung, ovarian, colorectal, 
bile duct or gastric cancer were obtained from ILSBio/Bioreclamation, Aarhus 
University, Herlev Hospital of the University of Copenhagen, Hvidovre Hospital, 
the University Medical Center of the University of Utrecht, the Academic Medical 
Center of the University of Amsterdam, the Netherlands Cancer Institute and the 
University of California, San Diego. All samples were obtained under Institutional 
Review Board approved protocols with informed consent from all participants for 
research use at participating institutions. Plasma samples from healthy individuals 
were obtained at the time of routine screening, including for colonoscopies or Pap 
smears. Individuals were considered healthy if they had no previous history of 
cancer and negative screening results.

Plasma samples from individuals with breast, colorectal, gastric, lung, ovarian, 
pancreatic and bile duct cancer were obtained at the time of diagnosis, before 
tumour resection or therapy. Nineteen patients with lung cancer analysed for 
changes in cfDNA fragmentation profiles across several time points were under-
going treatment with anti-EGFR or anti-ERBB2 therapy29. Clinical data for all 
patients included in this study are listed in Supplementary Table 1. Sex was con-
firmed by genomic analyses of X and Y chromosome representation. Pathological 
staging of patients with gastric cancer was performed after neoadjuvant therapy. 
Samples for which the tumour stage was unknown were indicated as stage X.
Nucleosomal DNA purification. Viably frozen lymphocytes were elutriated from 
leukocytes obtained from a healthy male (C0618) and female (D0808-L) (Advanced 
Biotechnologies). Aliquots of 1 × 106 cells were used for nucleosomal DNA purifi-
cation using EZ Nucleosomal DNA Prep Kit (Zymo Research). Cells were initially 
treated with 100 μl of Nuclei Prep Buffer and incubated on ice for 5 min. After 
centrifugation at 200g for 5 min, supernatant was discarded and pelleted nuclei 
were treated twice with 100 μl of Atlantis Digestion Buffer. Finally, cellular nucleic 
DNA was fragmented with 0.5 U of Atlantis dsDNase at 42 °C for 20 min. Reactions 
were stopped using 5× Stop Buffer and DNA was purified using Zymo-Spin IIC 
Columns. Concentration and quality of eluted cellular nucleic DNA were analysed 
using the Bioanalyzer 2100 (Agilent Technologies).
Sample preparation and sequencing of cfDNA. Whole blood was collected in 
EDTA tubes and processed immediately or within one day after storage at 4 °C, or 
was collected in Streck tubes and processed within two days of collection for three 
patients with cancer who were part of the monitoring analysis. Plasma and cellular 
components were separated by centrifugation at 800g for 10 min at 4 °C. Plasma 
was centrifuged a second time at 18,000g at room temperature to remove any 
remaining cellular debris and stored at −80 °C until the time of DNA extraction. 
DNA was isolated from plasma using the Qiagen Circulating Nucleic Acids Kit 
(Qiagen GmbH) and eluted in LoBind tubes (Eppendorf AG). Concentration and 
quality of cfDNA were assessed using the Bioanalyzer 2100 (Agilent Technologies).

Next-generation sequencing (NGS) cfDNA libraries were prepared for WGS and 
targeted sequencing using 5–250 ng of cfDNA as previously described5. In brief, 
genomic libraries were prepared using the NEBNext DNA Library Prep Kit for 
Illumina (New England Biolabs (NEB)) with four main modifications to the man-
ufacturer’s guidelines: (i) the library purification steps used the on-bead AMPure 
XP approach to minimize sample loss during elution and tube transfer steps32; (ii) 
NEBNext End Repair, A-tailing and adaptor ligation enzyme and buffer volumes 
were adjusted as appropriate to accommodate the on-bead AMPure XP purifica-
tion strategy; (iii) a pool of eight unique Illumina dual index adaptors with 8-bp 
barcodes was used in the ligation reaction; and (iv) cfDNA libraries were amplified 
with Phusion Hot Start Polymerase. Whole-genome libraries were sequenced using 
100-bp paired-end runs on the Illumina HiSeq 2000/2500 (Illumina).
Analyses of targeted sequencing data from cfDNA. Analyses of targeted NGS 
data for cfDNA samples were performed as previously described5. In brief, primary 
processing was completed using Illumina Consensus Assessment of Sequence and 
Variation (CASAVA) software (v.1.8), including demultiplexing and masking of 
dual-index adaptor sequences. Sequence reads were aligned against the human 
reference genome (version hg18 or hg19) using NovoAlign with additional realign-
ment of select regions using the Needleman–Wunsch method33. The positions of 
sequence alterations we identified have not been affected by the different genome 
builds. Candidate mutations, consisting of point mutations, small insertions and 
deletions, were identified using VariantDx33 (Personal Genome Diagnostics) across 
the targeted regions of interest.

To analyse the fragment lengths of cfDNA molecules, we required that each 
read pair from a cfDNA molecule had a Phred quality score ≥30. We removed all 
duplicate DNA fragments, defined as having the same start, end and index barcode. 
For each mutation, we included only fragments for which one or both of the read 
pairs contained the mutated (or wild-type) base at the given position. This analysis 
was done using the R packages Rsamtools and GenomicAlignments.

For each genomic locus in which a somatic mutation was identified, we com-
pared the lengths of fragments containing the mutant allele to the lengths of  

fragments with the wild-type allele. If more than 100 mutant fragments were identi-
fied, we used Welch’s two-sample t-test to compare the mean fragment lengths. For 
loci with fewer than 100 mutant fragments, we implemented a bootstrap procedure. 
Specifically, we sampled with replacement N fragments containing the wild-type 
allele, in which N denotes the number of fragments with the mutation. For each 
bootstrap replicate of wild-type fragments, we computed their median length. 
The P value was estimated as the fraction of bootstrap replicates with a median 
wild-type fragment length as long as, or more extreme than, the observed median 
mutant fragment length.
Analyses of WGS data from cfDNA. Primary processing of whole-genome NGS 
data for cfDNA samples was performed using Illumina CASAVA (Consensus 
Assessment of Sequence and Variation) software (v.1.8.2), including demultiplex-
ing and masking of dual-index adaptor sequences. Sequence reads were aligned 
against the human reference genome (version hg19) using ELAND.

Read pairs with a MAPQ score below 30 for either read and PCR duplicates 
were removed. We tiled the hg19 autosomes into 26,236 adjacent, non-overlapping 
100-kb bins. We excluded regions of low mappability based on previous work27 in 
which 10% of bins with the lowest coverage were removed, and excluded reads that 
fell in the Duke blacklisted regions (http://hgdownload.cse.ucsc.edu/goldenpath/
hg19/encodeDCC/wgEncodeMapability/). Using this approach, we excluded 361 
Mb (13%) of the hg19 reference genome, including centromeric and telomeric 
regions. Short fragments were defined as having lengths between 100 and 150 bp 
and long fragments as having lengths between 151 and 220 bp.

To account for biases in coverage attributable to GC content of the genome, we 
applied locally weighted scatterplot smoothing (LOWESS, also known as LOESS) 
regression analysis with a span setting of 0.75 to the scatterplot of average frag-
ment GC versus coverage calculated for each 100-kb bin. This LOESS regression 
was performed separately for short and long fragments to account for possible 
differences in GC effects on coverage in plasma by fragment length—an approach 
loosely motivated by a previous study34. We subtracted the predictions for short 
and long coverage explained by GC from the LOESS model, obtaining residuals for 
short and long that were uncorrelated with GC. We returned the residuals to the 
original scale by adding back the genome-wide median short and long estimates 
of coverage. This procedure was repeated for each sample to account for possible 
differences in GC effects on coverage between samples. To reduce the feature space 
and noise further, we calculated the total GC-adjusted coverage in 5-Mb bins.

To compare the variability of fragment lengths from healthy subjects to frag-
ments in patients with cancer, we calculated the standard deviation of the short to 
long fragmentation profiles for each individual. We compared the median of the 
standard deviations in the two groups by a Wilcoxon rank-sum test.
Analyses of changes in chromosome-arm copy number. To develop arm-level 
statistics for copy number changes, we adapted a previously described approach 
for aneuploidy detection in plasma, which used both chromosome-arm-specific 
Z-scores as well as plasma aneuploidy (PA) scores to summarize arm-level data10. 
This adapted approach divides the genome into non-overlapping 50-kb bins for 
which GC-corrected log2-transformed read depth was obtained after correction 
by LOESS with span setting of 0.75. This LOESS-based correction is comparable to 
the approach outlined above, but is evaluated on a log2 scale to increase robustness 
to outliers in the smaller bins and does not stratify by fragment length. To obtain 
an arm-specific Z-score for changes in copy number, the mean GC-adjusted read 
depth for each arm was centred and scaled by the mean and standard deviation, 
respectively, of read depth scores obtained from an independent set of 50 healthy 
samples.
Analyses of mitochondrial-aligned reads from cfDNA. Whole-genome sequence 
reads that initially mapped to the mitochondrial genome were extracted from .bam 
files and realigned to the hg19 reference genome in end-to-end mode with Bowtie2 
as previously described35. The resulting aligned reads were filtered such that both 
mates aligned to the mitochondrial genome with MAPQ ≥ 30. The number of 
fragments mapping to the mitochondrial genome was counted and converted to a 
percentage of the total number of fragments in the original .bam files.
Prediction model for cancer detection. To distinguish healthy individuals from 
patients with cancer using fragmentation profiles, we used a stochastic gradient 
boosting model (gbm)36,37. GC-corrected total and short fragment coverage for 
all 504 bins were centred and scaled for each sample to have mean zero and unit 
standard deviation. Additional features included Z-scores for each of the 39 auto-
somal arms and mitochondrial representation (log10-transformed proportion 
of reads mapped to the mitochondria). To estimate the prediction error of this 
approach, we used tenfold cross-validation38. Feature selection, performed only on 
the training data in each cross-validation run, removed bins that were highly cor-
related (correlation > 0.9) or had near-zero variance. Stochastic gradient boosted 
machine learning was implemented using the R package gbm with parameters: 
n.trees = 150, interaction.depth = 3, shrinkage = 0.1, and n.minobsinside = 10. 
To average over the prediction error from the randomization of individuals to folds, 
we repeated the tenfold cross-validation procedure ten times. Confidence intervals 
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for sensitivity were obtained from 2,000 bootstrap replicates with specificity fixed 
at 98% and 95%.
Prediction model for tumour tissue of origin classification. For samples cor-
rectly identified from patients with cancer at 90% specificity (n = 174), a separate 
stochastic gradient boosting model was trained to classify the tissue of origin. To 
account for the small number of lung samples used for prediction, we included 
18 cfDNA baseline samples from patients with late-stage lung cancer from the 
monitoring analyses of our study. Performance characteristics of the model were 
evaluated using tenfold cross-validation repeated ten times. This gbm model was 
trained using the same features as in the cancer classification model. Features 
that displayed correlation above 0.9 to each other or had near zero variance were 
removed within each training dataset during cross-validation. The tissue class 
probabilities were averaged across the ten replicates for each patient and the class 
with the highest probability was used as the predicted tissue.
Analyses of nucleosomal DNA from human lymphocytes and cfDNA. From 
the nuclease-treated lymphocytes, fragment sizes were analysed in 5-Mb bins as 
described for whole-genome cfDNA analyses. A genome-wide map of nucleosome 
positions was constructed from the nuclease-treated lymphocyte cell lines. This 
approach identified local biases in the coverage of circulating fragments, indicating 
a region protected from degradation. A ‘window positioning score’ (WPS) was used 
to score each base pair in the genome18. Using a sliding window of 60-bp centred 
around each base, the WPS was calculated as the number of fragments completely 
spanning the window minus the number of fragments with only one end in the 
window. Because fragments arising from nucleosomes have a median length of 167 
bp, a high WPS indicated a possible nucleosomic position. WPS values were cen-
tred at zero using a running median and smoothed using a Kolmogorov–Zurbenko 
filter39. For spans of positive WPS between 50 and 450 bp, a nucleosome peak was 
defined as the set of base pairs with a WPS above the median in that window. The 
calculation of nucleosome positions for cfDNA from 30 healthy individuals with 
sequence coverage of 9× was determined in the same manner as for lympho-
cyte DNA. To ensure that nucleosomes in healthy cfDNA were representative, we 
defined a consensus track of nucleosomes consisting only of nucleosomes identi-
fied in two or more individuals. Median distances between adjacent nucleosomes 
were calculated from the consensus track.
Monte Carlo simulation of detection sensitivity. We used Monte Carlo simu-
lation to estimate the probability of detecting a molecule with a tumour-derived 
alteration. In brief, we generated one million molecules from a multinomial dis-
tribution. For a simulation with m alterations, wild-type molecules were simulated 
with probability p and each of the m tumour alterations were simulated with proba-
bility (1 − p)/m. Next, we sampled g × m molecules randomly with replacement, in 
which g denotes the number of genome equivalents in 1 ml of plasma. If a tumour 
alteration was sampled (s) or more times, we classified the sample as cancer- 
derived. We repeated the simulation 1,000 times, estimating the probability that the 

in silico sample would be correctly classified as cancer by the mean of the cancer 
indicator. Setting g = 2,000 and s = 5, we varied the number of tumour alterations 
by powers of 2 from 1 to 256 and the fraction of tumour-derived molecules from 
0.0001% to 1%.
Statistical analyses. All statistical analyses were performed using R version 3.4.3. 
The R packages caret (v.6.0-79) and gbm (v.2.1-4) were used to implement the clas-
sification of healthy versus cancer and tissue of origin. Confidence intervals from 
the model output were obtained with the pROC (v.1.13) R package40. Assuming 
the prevalence of undiagnosed cancer cases in this population is high (1 or  
2 cases per 100 healthy), a genomic assay with a specificity of 0.95 and sensitivity of  
0.8 would have useful operating characteristics (positive predictive value of 0.25 
and negative predictive value near 1). Power calculations suggest that an analysis 
of more than 200 patients with cancer and an approximately equal number of 
healthy controls, enable an estimation of the sensitivity with a margin of error 
of 0.06 at the desired specificity of 0.95 or greater. The experiments were not 
randomized, and investigators were not blinded to allocation during experiments 
and outcome assessment.

Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
Sequence data used in this study have been deposited at the database of Genotypes 
and Phenotypes (dbGaP, study ID 34536).

Code availability
Code for analyses is available at http:github.com/Cancer-Genomics/delfi_scripts.
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Extended Data Fig. 1 | Simulations of non-invasive cancer detection 
based on number of alterations analysed and tumour-derived cfDNA 
fragment distributions. a, Monte Carlo simulations were performed 
using different numbers of tumour-specific alterations to evaluate the 
probability of detecting cancer alterations in cfDNA at the indicated 
fraction of tumour-derived molecules. The simulations were performed 
assuming an average of 2,000 genome equivalents of cfDNA and the 
requirement of five or more observations of any alteration. These analyses 
indicate that increasing the number of tumour-specific alterations 

improves the sensitivity of detection of circulating tumour DNA. b, 
Cumulative density functions of cfDNA fragment lengths of 42 loci 
containing tumour-specific alterations from 30 patients with breast, 
colorectal, lung, or ovarian cancer are shown with 95% confidence bands 
(orange). Lengths of mutant cfDNA fragments were significantly different 
in size from wild-type cfDNA fragments (blue) at these loci. c, GC content 
was similar for mutated and non-mutated fragments. d, GC content was 
not correlated to fragment length.
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Extended Data Fig. 2 | Germline and haematopoietic cfDNA fragment 
distributions. a, Cumulative density functions of fragment lengths at 
44 loci containing germline alterations (non-tumour derived) from 38 
patients with breast, colorectal, lung or ovarian cancer are shown with 
95% confidence bands. Fragments with germline mutations (orange) 
were comparable in length to wild-type cfDNA fragment lengths (blue). 

b, Cumulative density functions of fragment lengths at 41 loci containing 
haematopoietic alterations (non-tumour derived) from 28 patients with 
breast, colorectal, lung or ovarian cancer are shown with 95% confidence 
bands. After correction for multiple testing, there were no significant 
differences (α = 0.05) in the size distributions of mutated haematopoietic 
cfDNA fragments (orange) and wild-type cfDNA fragments (blue).



LetterRESEARCH

Extended Data Fig. 3 | cfDNA fragmentation in healthy individuals 
and patients with lung cancer. a, cfDNA fragment lengths are shown for 
healthy individuals (n = 30, grey) and patients with lung cancer (n = 8, 
blue). b–d, cfDNA fragmentation profiles from healthy individuals 
(n = 30) had high correlations, whereas patients with lung cancer (n = 8) 
had lower correlations to median fragmentation profiles of lymphocytes 
(b), lymphocyte nucleosome distances (c) and healthy cfDNA (d). Pearson 
correlations are shown with box plots depicting minimum, 25th percentile, 

median, 75th percentile, and maximum values. e, High coverage (9×) 
WGS data were subsampled to 2×, 1×, 0.5×, 0.2× and 0.1×-fold 
coverage. Mean centred genome-wide fragmentation profiles in 5-Mb bins 
for 30 healthy individuals and 8 patients with lung cancer are depicted 
for each subsampled fold coverage with median profiles shown in blue. f, 
Pearson correlation of subsampled profiles to initial profile at 9× coverage 
for healthy individuals and patients with lung cancer.
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Extended Data Fig. 4 | cfDNA fragmentation profiles and sequence 
alterations during therapy. Detection and monitoring of cancer in serial 
blood draws from patients with non-small cell lung cancer (n = 19) 
undergoing treatment with targeted tyrosine kinase inhibitors (black 
arrows) was performed using targeted sequencing (top) as previously 
reported29, and genome-wide fragmentation profiles (bottom). For each 
case, the vertical axis of the bottom panel displays −1 times the Pearson 
correlation of each sample to the median healthy cfDNA fragmentation 
profile. Error bars depict confidence intervals from binomial tests for 
mutant allele fractions, and confidence intervals calculated using Fisher 

transformation for genome-wide fragmentation profiles. Although the 
approaches analyse different aspects of cfDNA (whole genome compared 
with specific alterations), the targeted sequencing and fragmentation 
profiles were similar for patients responding to therapy as well as those 
with stable or progressive disease. As fragmentation profiles reflect both 
genomic and epigenomic alterations (whereas mutant allele fractions 
only reflect individual mutations), mutant allele fractions alone may not 
reflect the absolute level of correlation of fragmentation profiles to healthy 
individuals.



LetterRESEARCH

Extended Data Fig. 5 | Profiles of cfDNA fragment lengths in copy 
neutral regions in healthy individuals and one patient with colorectal 
cancer. a, The fragmentation profiles in 211 copy neutral windows in 
chromosomes 1–6 are shown for 25 randomly selected healthy individuals 
(grey). For a patient with colorectal cancer (CGCRC291) with an 
estimated mutant allele fraction of 20%, we diluted the cancer fragment 
length profile to an approximate 10% tumour contribution (blue). a, b, 

Although the marginal densities of the fragment profiles for the healthy 
samples and patient with cancer show substantial overlap (a, right), the 
fragmentation profiles are different as can be seen through visualization 
of the fragmentation profiles (a, left) and by the separation of the patient 
with colorectal cancer from the healthy samples (n = 25) in a principal 
component analysis (b).
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Extended Data Fig. 6 | Genome-wide GC correction of cfDNA 
fragments. To estimate and control for the effects of GC content on 
sequencing coverage, we calculated coverage in non-overlapping 
100-kb genomic windows across the autosomes. For each window, we 
calculated the average GC of the aligned fragments. a, LOESS smoothing 
of raw coverage (top row) for two randomly selected healthy subjects 
(CGPLH189 and CGPLH380) and two patients with cancer (CGPLLU161 
and CGPLBR24) with undetectable aneuploidy (PA score < 2.35). After 
subtracting the average coverage predicted by the LOESS model, the 
residuals were rescaled to the median autosomal coverage (bottom row). 
As fragment length may also result in coverage biases, we performed this 

GC correction procedure separately for short (≤150 bp) and long (>150 
bp) fragments. Although the 100-kb bins on chromosome 19 (blue points) 
consistently have less coverage than predicted by the LOESS model, we 
did not implement a chromosome-specific correction as such an approach 
would remove the effects of chromosomal copy number on coverage. b, 
Overall, we found a limited correlation between short or long fragment 
coverage and GC content after correction among healthy individuals 
(n = 211, interquartile range: −0.03–0.03) and patients with cancer 
(n = 128, interquartile range: −0.06–0.02) with a PA score < 3. Box plots 
depict 25th percentile, median, and 75th percentile values.
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Extended Data Fig. 7 | Machine learning model. a, We used gradient 
tree boosting machine learning to examine whether cfDNA can be 
categorized as having characteristics of a patient with cancer or a healthy 
individual. The machine learning model included fragmentation size 
and coverage characteristics in windows throughout the genome, as well 
as chromosomal arm and mitochondrial DNA copy numbers. We used 
a tenfold cross-validation approach in which each sample is randomly 
assigned to a fold, and nine of the folds (90% of the data) are used for 
training and one fold (10% of the data) is used for testing. The prediction 
accuracy from a single cross-validation is an average over the ten possible 
combinations of test and training sets. As this prediction accuracy can 

reflect bias from the initial randomization of patients, we repeat the entire 
procedure, including the randomization of patients to folds, ten times. 
For all cases, feature selection and model estimation were performed 
on training data and were validated on test data, and the test data were 
never used for feature selection. Ultimately, we obtained a DELFI 
score that could be used to classify individuals as likely to be healthy 
or having cancer. b, Distribution of AUCs across the repeated tenfold 
cross-validation. The 25th, 50th and 75th percentiles of the 100 AUCs 
for the cohort of 215 healthy individuals and 208 patients with cancer are 
indicated by dashed lines.
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Extended Data Fig. 8 | Whole-genome analyses of chromosomal arm 
copy number changes and mitochondrial genome representation. 
a, Z-scores for each autosome arm are depicted for healthy individuals 
(n = 215) and patients with cancer (n = 208). The vertical axis depicts 
normal copy at zero with positive and negative values indicating arm 

gains and losses, respectively. Z-scores greater than 50 or less than −50 
are thresholded at the indicated values. b, The fraction of reads mapping 
to the mitochondrial genome is depicted for healthy individuals (n = 215) 
and patients with cancer (n = 208). Box plots depict the minimum, 25th 
percentile, median, 75th percentile, and maximum values.
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Extended Data Fig. 9 | DELFI detection of cancer and tissue of origin 
prediction. a, Analyses of individual cancer types using DELFI had 
AUCs ranging from 0.86 to >0.99. b, Receiver operator characteristics 
for detection of cancer using cfDNA fragmentation profiles and other 
genome-wide features in a machine learning approach are depicted 
for a cohort of 215 healthy individuals and each stage of 208 patients 
with cancer with ≥95% specificity shaded in blue. c, Receiver operator 

characteristics for DELFI tissue prediction of bile duct, breast, colorectal, 
gastric, lung, ovarian or pancreatic cancer are depicted. To increase sample 
sizes within cancer type classes, we included cases detected with a 90% 
specificity, and the lung cancer cohort was supplemented with the addition 
of baseline cfDNA data from 18 patients with lung cancer with prior 
treatment36. d, DELFI tissue of origin prediction.
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Extended Data Fig. 10 | Detection of cancer using DELFI and mutation-
based cfDNA approaches. DELFI (green) and targeted sequencing10 for 
mutation identification (blue) were performed independently in a cohort 
of 126 patients with breast, bile duct, colorectal, gastric, lung or ovarian 

cancer. The number of individuals detected by each approach and in 
combination are indicated for DELFI detection with a specificity of 98%, 
targeted sequencing specificity at >99%, and a combined specificity of 
98%. ND, not detected.
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Data collection Primary processing of whole genome NGS data for cfDNA samples was performed using Illumina CASAVA (version 1.8.2) with alignment 
using ELAND. Re-alignment of mitochondrial mapped reads was done using Bowtie-2 (version 2.3.4) in end-to-end mode. Sequence reads 
in the analysis of targeted data were aligned using NovoAlign (version 3.02.12) and variant calling was performed using VariantDx.

Data analysis All analyses were performed using R (version 3.4.3). Binning of the human genome was done using the R package GenomicRanges 
(version 1.30.3). Prediction was implemented using R package gbm (version 2.1.4), caret (version 6.0.79) and pROC (version 1.13).  Bam 
file processing and analyses of targeted data were performed using Rsamtools (version 1.30.0) and GenomicAlignments (version 1.14.2).
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- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Sequence data utilized in this study have been deposited at the database of Genotypes and Phenotypes (dbGaP, study ID 34536).  Code for analyses is available at 
http:github.com/Cancer-Genomics/delfi_scripts.
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Sample size Assuming the prevalence of undiagnosed cancer cases in this population is high (1 or 2 cases per 100 healthy), a genomic assay with a 
specificity of 0.95 and sensitivity of 0.8 would have useful operating characteristics (positive predictive value of 0.25 and negative predictive 
value near 1).  An analysis of more than 200 cancer patients and an approximately equal number of healthy controls would provide an 
estimation of the sensitivity with a margin of error of 0.06 at the desired specificity of 0.95.

Data exclusions Plasma samples that were not collected according the described protocol were not used in the analysis.

Replication We successfully performed internal replication in our study, including replication of the initial observations of our pilot study in a larger  
analysis of healthy individuals and patients with cancer.  

Randomization Not applicable

Blinding Not applicable
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Human research participants
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Population characteristics Plasma samples from healthy individuals and plasma and tissue samples from patients with breast, lung, ovarian, colorectal, bile 
duct, and gastric cancers were obtained from ILSBio/Bioreclamation, Aarhus University, Herlev Hospital of the University of 
Copenhagen, Hvidovre Hospital, the University Medical Center of the University of Utrecht, the Academic Medical Center of the 
University of Amsterdam, the Netherlands Cancer Institute, and the University of California, San Diego.  All samples were 
obtained under Institutional Review Board approved protocols with informed consent for research use at participating 
institutions.  Plasma samples from healthy individuals were obtained at the time of routine screening, including for 
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colonoscopies or Pap smears.  Individuals were considered healthy if they had no previous history of cancer and negative 
screening results.  

Recruitment Participants were recruited through screening trials, observational trials, or through formal biospecimen collection at University 
center hospitals.  Potential self-selection bias or other biases were not identified.
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