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Abstract
Background: Germline copy number variants (CNVs) increase risk for many diseases, yet detection of CNVs and
quantifying their contribution to disease risk in large-scale studies is challenging due to biological and technical
sources of heterogeneity that vary across the genome within and between samples.

Methods: We developed an approach called CNPBayes to identify latent batch effects in genome-wide association
studies involving copy number, to provide probabilistic estimates of integer copy number across the estimated
batches, and to fully integrate the copy number uncertainty in the association model for disease.

Results: Applying a hidden Markov model (HMM) to identify CNVs in a large multi-site Pancreatic Cancer Case
Control study (PanC4) of 7598 participants, we found CNV inference was highly sensitive to technical noise that varied
appreciably among participants. Applying CNPBayes to this dataset, we found that the major sources of technical
variation were linked to sample processing by the centralized laboratory and not the individual study sites. Modeling
the latent batch effects at each CNV region hierarchically, we developed probabilistic estimates of copy number that
were directly incorporated in a Bayesian regression model for pancreatic cancer risk. Candidate associations aided by
this approach include deletions of 8q24 near regulatory elements of the tumor oncogeneMYC and of Tumor
Suppressor Candidate 3 (TUSC3).

Conclusions: Laboratory effects may not account for the major sources of technical variation in genome-wide
association studies. This study provides a robust Bayesian inferential framework for identifying latent batch effects,
estimating copy number, and evaluating the role of copy number in heritable diseases.
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Background
Germline copy number variants (CNVs) can be identi-
fied from hybridization-based arrays and capture-based
sequencing with measures of abundance derived from
intensities and normalized read depth, respectively. Bio-
logical and technical sources of heterogeneity of these
measurements are intricately related. For example, the
GC composition of genomic DNA effects PCR efficiency
and leads to autocorrelated measures of DNA abundance
across the genome [1–4]. These effects have been shown
to be heterogeneous across the genome and to differ in
both magnitude and direction between samples [1, 5, 6].
Hidden Markov models and nonparametric segmentation
algorithms for CNV detection over-segment low-quality
data where these effects are the most pronounced, con-
tributing to false positive deletion and duplication calls.
For studies with hundreds to thousands of samples,

estimation of copy number at regions known to harbor
CNVs has the potential to improve sensitivity and speci-
ficity as technical sources of variation across the genome
are largely controlled when limited to a focal genomic
region (less than 1 MB) and variation between samples
can be explicitly modeled [7–12]. Such CNV regions are
of particular interest for a comprehensive assessment of
common genetic variants and their relationship to dis-
ease. However, scaling marginal models to CNV regions
across the genome and to thousands of samples has
proved challenging. The sources of technical variation
giving rise to batch effects are typically unknown. Stan-
dard approaches for estimating latent batch effects in
high-throughput experiments such as surrogate variable
analysis are not appropriate when the biological variation
of interest (copy number) is also unknown [13]. In addi-
tion, the statistical framework for copy number estimation
must flexibly accommodate deletions and duplications of
varying size and allele frequencies. Symptomatic of the
challenges in copy number analyses and the limitations of
current methods, genome-wide association studies rarely
incorporate copy number in the initial publication despite
their well established role in neurodevelopmental dis-
orders [14–16] and cancer [17]. Previous genome-wide
studies of pancreatic cancer and copy number have been
limited in size with fewer than 250 pancreatic cancer
patients [18, 19].
Here, we performed genome-wide copy number analy-

sis for 3,974 cases and 3,624 controls in PanC4 using Illu-
mina’s OmniExpress Exome array.We developedmethods
for identifying latent batch effects at CNV regions from
commonly available experimental data on the samples.
The effects of copy number and batch on measures of
DNA abundance were modeled hierarchically through
implementation of Bayesian finite mixturemodels. For the
association model, we used Markov Chain Monte Carlo
(MCMC) to incorporate the uncertainty of the integer

copy numbers in a logistic regression model of pancreatic
cancer risk.

Methods
The Pancreatic Cancer Case and Control Consortium
Clinical and demographic characteristics of the cases

and controls in PanC4 and recruitment methods have
been previously described [20]. All samples were pro-
cessed using GenomeStudio (version 2011.1, Genotyping
Module 1.9.4). For GC-correction, we sampled a ran-
dom subset of 30,000 Illumina probes, fit LOESS with
span 1/3 to the scatterplot of log2 R ratios and probe GC
content, and predicted the log2 R ratios for the full probe-
set from the LOESS model. For spatial correction, we
applied LOESS to the GC-corrected log2 R ratios at sin-
gle nucleotide polymorphisms (SNPs) with balanced allele
frequencies (0.4 < B allele frequency < 0.6) ordered by
genomic position within each chromosome arm and pre-
dicted the GC-corrected log2 R ratios for the full probeset,
including SNPs with imbalanced allele frequencies. The
residuals from the spatial LOESS were used in all down-
stream analyses with CNPBayes.
CNV regions:
CNV regions identified for further analysis by

CNPBayes were obtained from the collection of CNVs
identified from a hidden Markov model as well as known
CNV regions from the 1000 Genomes Project. For the
former, we fit a 5-state hidden Markov model imple-
mented in the R package VanillaICE (version 1.40.0)
using default parameter settings [21]. To obtain a high
confidence call set, we removed CNVs with fewer than
10 probes, CNVs with posterior probability less than 0.9,
and restricted inference to autosomal chromosomes. To
assess the effect of spatial adjustment on copy number
inference, we stratified the samples into deciles of median
absolute deviation and autocorrelation coefficient (ACF)
and compared the results of the 5-state HMM fit after
GC-correction to the CNVs identified after spatial cor-
rection. Concordance of CNVs identified by the HMMs
was defined by ≥ 50% reciprocal overlap [22].
CNV regions were defined by the set of non-overlapping

disjoint intervals across the pooled set of all CNVs from
cases and controls. We computed the number of subjects
with a CNV overlapping each disjoint interval, retaining
intervals where CNVs were identified in at least 150 par-
ticipants. Among the disjoint intervals, we defined the
CNV region as the minimum start and maximum end for
which at least 50 percent of the copy number altered sam-
ples had a CNV. For CNV regions obtained from the 1000
Genomes Project, we excluded regions that did not span
at least 4 markers on the OmniExpress array.
Batch effects:
We evaluated both chemistry plate and DNA extraction

method as surrogates for batch effects. With provisionally
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defined batches by plate or extraction method, we com-
pared the empirical cummulative distribution function
(eCDF) of the mean log2 R ratio between two batches
(excluding samples with log2 R ratio < −1) by the
Kolmogorov-Smirnov (K-S) test statistic. For two batches
without a statistically significant difference in the K-S
statistic at a type 1 error of 0.01, the batches were com-
bined into a single new batch. This procedure was applied
recursively at each CNV region until no further grouping
of batch surrogates could be obtained.
Hierarchical Bayesian mixture model:
Hierarchical Bayesian mixtures of t-distributions were

used to cluster median log2 R ratios within a CNV region.
Let rib and zib denote the observed one-dimensional sum-
mary of log2 ratios measured from the array and the
true (but latent) mixture component, respectively, for the
ith individual in batch b. Given zib is some integer h
(h ∈ {1, . . . ,K} for a K-component model), our sam-
pling model for the observed data is a shifted and scaled
t-distribution with d degrees of freedom, mean θhb, and
standard deviation σhb that depends on batch:
[
rib|zib = h, θhb, σ 2

hb,Uib
]

∼ Normal
(

θhb,
σ 2
hb

Uib/d

)

,

zib|πb1, . . . ,πbK ∼ Multinomial(πb1, . . . ,πbK ),
πb1, . . . ,πbK |απ

1 , . . . ,απ
K ∼ Dirichlet

(
απ
1 , . . . ,απ

K
)
, and

Uib|d ∼ Gamma(d/2, d/2).
The degrees of freedom d controls robustness to out-

liers with larger values approximating a mixture of normal
distributions [23]. To stabilize the mean and precision of
batches having fewer samples, we model these parameters
hierarchically with computationally convenient conjugate
priors. Our sampling model for the batch means is normal
and the precisions are Gamma,

θhb|µh, τ 2h ∼ Normal
(
µh, τ 2h

)
and

σ̃ 2
hb|ν0, σ 2

0 ∼ Gamma
(1
2ν0,

1
2ν0σ 2

0

)
,

withµh representing the overall mean for component h, τh
capturing the heterogeneity of the batch-specific means,
and σ̃ 2

hb = 1/σ 2
hb. Conjugate priors on µh, τ 2h , σ0, and ν0

are given by
µh|µo, τ 20 ∼ Normal(µ0, τ 20 ) for h = 1, . . . ,K ,

τ̃ 2h ∼ Gamma
(1
2η0,

1
2η0m2

0

)
,

σ 2
0 |a0, b0 ∼ Gamma(a0, b0), and

ν0|β ∼ Geometric(β).
Label switching is well known in Bayesianmixture mod-

els. In addition to visual inspection of the chains, we
compared the ordering of parameter means for subse-
quences of the chains. Label switching occurred most

often when the number of components specified was too
large and these models were discarded. In addition, we
use an informative prior on τ 2h that governs the hetero-
geneity of the mean for mixture component h across the
batches (Table S3). This prior discourages label switch-
ing at bona fide copy number polymorphisms since this
would typically result in a large variance of the component
means.
As all priors were conjugate, we used Gibbs sam-

pling to approximate the joint posterior distribution of
p

(
µµµ,τττ ,θθθ ,σσσ 2,zzz,πππ , ν0, τ 20 , σ 2

0 ,m2
0, η0|rrr,K , d

)
.We refer to the

above implementation of the Gibbs sampler with batch-
specific means and variances as the multi-batch (MB)
model. CNPBayes provides several more parsimonious
alternatives to the MB model, including a pooled variance
model (MBP) with a single variance estimate per batch.
In addition, we evaluated models with a single batch (SB)
and a single batch model with pooled variances (SBP) that
are special cases of the MB andMBPmodels, respectively.
Hyper-parameters used in the MB, MBP, SB, and SBP
models were the defaults in version 1.11.2 of CNPBayes
(Table S3).
Implementation:
Heavy-tailed marginal distributions of the one-

dimensional log2 R ratio summaries were often a
consequence of batch effects. When latent batch effects
were estimated as previously described, near-Gaussian
mixtures were needed to fit the very peaked densities of
log ratios near the central mode. As residual outliers and
lack of normality after taking batch effects into account
were often asymmetric and could be captured by an
additional mixture component, we fit finite mixtures
of near-Gaussian distributions with d=100 degrees of
freedom in both the PanC4 application and simulations.
Estimation of d, for example from a discrete uniform
prior ([24, 25]), is not currently available in CNPBayes.
For studies of germline CNVs, extreme observations

in the left-tail typically correspond to homozygous dele-
tions and, when rare, may be present in a subset of
the estimated batches. The consequences of a rare dele-
tion present in a subset of batches are two-fold: (1)
due to the hierarchical nature of the model, a mixture-
component with a very large variance will be needed to
accommodate the extreme observations and (2) the mix-
ture component indices may correspond to different copy
number states between batches, complicating subsequent
efforts to map mixture component indices to integer
copy numbers. Rather than exclude these observations,
we augment the observed data with simulated homozy-
gous deletions. The simulated observations ensure the
mixture component indices capture the same latent copy
number in each batch. We rationalize this approach as
being comparable to an empirically derived prior that
large negative values at such germline CNV regions are
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not outliers of the hemizygous and diploid states but bona
fide homozygous deletions. Since our model does not
assume a one-to-one mapping between mixture compo-
nents and copy number nor that any of the alterations
identified will be in Hardy Weinberg equilibrium (HWE),
the assessment of HWE for germline CNVs can be a
useful post-hoc quality control. While evidence against
HWE does not necessarily indicate problems with the
CNV calling, support for HWE would be unlikely if
there were major sources of technical variation not yet
accounted for.
As fitting hierarchical Bayesian mixture models is com-

putationally intensive, we implemented ad hoc proce-
dures to reduce computation (see also Scalability and
Software). First, we considered only 3 and 4 component
models when homozygous deletions were apparent (one-
and two-component models were not evaluated). Sec-
ondly, MB and MBP models were only evaluated when
more than 2% of the samples had a posterior probabil-
ity < 0.99 in the SB and/or SBP models. Thirdly, for each
model under consideration, we independently initialized
10 models with parameters randomly sampled from their
priors and ran a short burnin of 200 iterations for each
model. Only the model with the largest log likelihood
was selected for an additional 500 burnin simulations and
1000 simulations post-burnin. Finally, to aid comparison
between hierarchical SB, SBP, MB, and MBP models, the
CNPBayes package implements Chib’s method to esti-
mate the marginal likelihood [26], allowing estimates of
the relative evidence between two models by Bayes fac-
tors. However, as estimation of the marginal likelihoods
requires additional MCMC simulations, we only com-
puted marginal likelihoods when the difference of simple
post-hoc statistical summaries, such as the log likelihood
evaluated at the last iteration, was small (e.g., < 10).
CNPBayes automatically provides posterior predictive
distributions of the CNV region summaries for goodness
of fit assessments, allowing simple verification that the
selected model is not simply the best of many poor fitting
models. We recommend runningmultiple chains to assess
convergence [27] and additional MCMC simulations with
an increased thin parameter when autocorrelation is
substantial.
Genotyping mixture components:
For genotyping the mixture components at a CNP

region, our goal was to identify the set of integer copy
numbers that would most likely give rise to the observed B
allele frequencies (BAFs) at SNPs in this genomic region.
We excluded samples that were not assigned to a single
mixture component with high posterior probability since
these would be less informative. Denoting the mapping of
mixture component indices h to integer copy numbers by
f (h), the likelihood across SNPs indexed by j and samples
indexed by i conditional on the mapping is

p(bbb|f (hhh),ψψψ) =
∏

i

∏

j
p(bij|f (hi),ψψψ),

p(bij|f (hi),ψψψ) =
∑

g∈G
p(bij|ψψψg)p(g|f (hi)),

p(bij|ψψψg) = dbeta(bij|ψψψg), and
p(g|f (hi)) = dbinom

(
g|pjB, |G(f (h))| − 1

)
, where

dbeta and dbinom are shorthand for the densities for the
beta and binomial distributions. For the binomial den-
sity, |·| denotes the cardinality of the set and pjB the
frequency of the B allele at SNP j in the population of
PanC4 participants. The above likelihood averages over
the set G of possible allele specific copy numbers ordered
by the number of B alleles and indexed by g (e.g., G(2) ∈
{AA,AB,BB}; Table S4). Shape and scale parameters (ψψψg)
for the Beta distribution conditional on the allelic copy
numbers are provided in Table S5. Evaluating one-to-one
(e.g., f ({1, 2, 3}) → {0, 1, 2} for a deletion polymorphism)
and many-to-one mappings (e.g., f ({1, 2, 3}) → {2, 2, 2}),
we selected the mapping that maximized the above likeli-
hood on the log-scale.
Simulation:
Affymetrix 6.0 data for 990 phase 3 HapMap sam-

ples processed on 16 chemistry plates were obtained
from Wellcome Sanger Institute (https://www.sanger.ac.
uk/resources/downloads/human/hapmap3.html) [28]. A
region on chr4 70,122,981-70,231,746 containing 53 non-
polymorphic markers and 1 SNP spans a common copy
number polymorphism. To establish a baseline for which
both CNPBayes and CNVCALL correctly identify the
copy number for all samples, we subtracted 3 from the
log2 R ratios for samples with apparent homozygous dele-
tions. To simulate batch effects, we simulated a Bernoulli
random variable with probability of success 0.5 for each of
the 16 chemistry plates. For a plate k where the Bernoulli
random deviate was 1, we rescaled the data by a factor ξ

and shifted the means by a normal random deviate cen-
tered at δ such that the simulated log2 R ratio (r∗) for
marker i in sample j with integer copy number c becomes
r∗ijk = (rijk − r̄c)× ξ + r̄c+ εijk , where εijk ∼ N(δ, 0.022) for
values of δ ∈ {0, 0.3, 0.4, 0.5} and ξ ∈ {1, 1.25, 1.50, 1.75, 2}.
Applying CNVCALL to this data, the matrix of rrr∗ was
summarized by the first principal component andmixture
models with 3-5 components were evaluated using default
parameters. As CNVCALL merges mixture components
based on the extent of overlap of the component-specific
densities but does not genotype the merged mixture
components, we subtracted one from the merged mix-
ture component indices. For CNPBayes, we explored SB,
SBP, MB, and MBP models of 3 - 4 components with
chemistry plate as the surrogate variable, median rrr∗i as
one-dimensional summaries for each sample, and default
values for hyperparameters. Mixture components were

https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
https://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
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genotyped using the BAFs from the SNPs in this region as
previously described.
Bayesian logistic regression model for pancreatic cancer:
For each CNP region, we modeled the case-control

status yi for individual i as:
[
yi|γγγ ,XXXi, z,β ,Ci

]
∼ Bernoulli(θi),

logit(θi) =β0 + β1agei + β2malei + β3PC1i
+ β4PC2i + β5PC3i + β6I[high quality]
+ z ×

(
β7Ci + β8Ci ∗ I[high quality]

)

βj ∼Cauchy(0, 2.52) for j = 0, . . . , 8,
z ∼Bernoulli(0.5), and

Ci ∼Multinomial(π∗
i1, . . . ,π∗

iG), where
π∗
ig =

∑

h:h∈{f (h)=g}
πih.

All continuous independent variables were mean cen-
tered, including PC1, PC2, and PC3 denoting the first
three principal components of the SNP genotype matrix
in PanC4 [20]. An indicator for the collection of high qual-
ity samples for CNV analyses, I[high quality], was defined
as 1 for samples in this set and 0 otherwise. As the
integer copy number Ci was not observed, we treated
Ci as a parameter measured with error given by the
aggregated posterior probabilities of the mixture compo-
nent indices after genotyping, π∗

ig . We used JAGS version
4.3.0 with a thin parameter of 25 and 5000 iterations
to obtain posterior distributions of these parameters by
MCMC [29].
Scalability and software:
Hierarchical mixture models were fit to a random sam-

ple of 1000 observations from the 7,598 available partici-
pants at each CNV region, and to all samples with appar-
ent homozygous deletions. We parallelized our analysis so
that all regions were evaluated simultaneously. Bayesian
logistic regression models fit independently to each CNV
region were also evaluated in parallel. CNPBayes is avail-
able from github (https://github.com/scristia/CNPBayes).

Results
Overview of study
DNA specimens from 7598 European ancestry partici-
pants in this consortium were collected at 9 study sites
using varying methods of DNA extraction [20]. Random-
ization of samples to chemistry plates, DNA amplification
by PCR, and SNP genotyping using Illumina’s Omni-
Express Exome-8 array were performed centrally at the
Center for Inherited Disease Research (CIDR) (Fig. 1).
CNV regions were extracted from the 1000 Genomes
project [30] or identified from analysis of the PanC4 sam-
ples. Low-level copy number summaries were obtained
for each participant by computing themedian log2 R ratios

across available markers from the Illumina array spanned
by the candidate CNV region. Independently for each
region, we identified latent batch effects in the low-level
summaries and fit a Bayesian hierarchical mixture model
across the estimated batches using CNPBayes. To model
the relationship between copy number and pancreatic
cancer risk, we fit a Bayesian logistic regressionmodel that
included integer copy number as a covariate measured
with error. The copy number measurement error for each
participant was obtained from the posterior probabilities
in the CNPBayes hierarchical model.

Copy number analyses
Log2R ratios for each participant were GC-corrected
using loess. Measures of data quality following GC-
correction include the median absolute deviation and lag-
10 autocorrelation of autosomal log2 R ratios ordered by
genomic position. Data quality was high for the majority
of PanC4 participants (Figure S1A), though approximately
11% of participants had autocorrelations greater than 0.1.
To reduce the spatial autocorrelation, we developed a scat-
terplot smoother for the log2 R ratios that was locally
weighted by genomic position (Methods). Following the
spatial correction, nearly all samples (≈ 98%) had low
autocorrelation (Figure S1B). Rare and common CNVs
identified by a 5-state HMM before and after spatial cor-
rection revealed near perfect concordance for samples in
the first nine deciles of ACF (high quality samples) with
sharply lower concordance among samples in the highest
decile irrespective of CNV size (Figure S2). Hereafter, we
refer to the set of 1,560 samples in the highest decile of
ACF (ACF ≥ 0.06) as low quality samples and the remain-
ing 6,038 samples in the first nine deciles (ACF < 0.06) as
high quality samples.
To evaluate whether copy number inference could be

improved by multi-sample methods that directly incor-
porate batch and other technical sources of variation
between samples, we focused our analysis on 217 regions
from the 1000 Genomes Project where CNVs were
reported in at least 0.1% of European ancestry partici-
pants and that encompassed at least four probes on the
Illumina OmniExome array (Table S1). Additionally, we
identified 46 regions for which deletions or duplications
were identified in at least 2% of the PanC4 participants by
the HMM applied to the spatially corrected log2 R ratios.
Collectively, the 263 regions comprised 11.5 Mb of the
coding genome and 6.4 Mb of the non-coding genome.
Available multi-sample methods for modeling copy

number assume the major sources of batch effects are
known (e.g., laboratory or study site). Here, DNA samples
were collected from multiple study sites and processed on
94 chemistry plates at a central lab. To identify batch sur-
rogates for the central lab, we developed an approach for
grouping chemistry plates with a similar median log2 R

https://github.com/scristia/CNPBayes
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a

b f

e

c

d

Fig. 1 Overview of sample processing, estimation of batch effects and copy number, and risk model for pancreatic cancer. a DNA samples for
pancreatic cancer cases and healthy controls were obtained from 9 different study centers and processed centrally where samples were
randomized to chemistry plates. b Initial preprocessing of these samples identified candidate CNV regions. As the principal sources of batch effects
were unknown, we developed an approach to identify latent batch effects by clustering empirical cummulative distribution functions (eCDFs) of
CNV region summaries (c) and to genotype these samples via a Bayesian hierarchical mixture model (d). Uncertainty of the copy number genotypes
(e) was propagated from the genomic analyses to the Bayesian logistic regression model for pancreatic cancer risk (f)

ratio eCDF (Fig. 2a and b). As an example of these sources
of heterogeneity at a single CNV region on chromosome
4, we summarized the log2 R ratios for 6,026 high quality
samples by the first principal component (PC1) and strat-
ified the PC1 summaries by study site (Fig. 3a) or PCR
batch surrogates (Fig. 3b). While the density of PC1 is
bimodal when stratified by study site and consistent with
a copy number polymorphism, stratification by the eCDF-
derived batch surrogates revealed obvious batch effects

(e.g., plate group C with 567 samples and plate group E
with 786 samples; Fig. 3b). As PCR efficiency is known to
be affected by GC content and can vary along the genome,
we identified batch surrogates for each CNV region. The
median number of batches across the 263 CNV regions
was 4 with multiple batches identified for the majority of
regions (Figure S3).
Our samplingmodel for themedian log2 R ratio is amix-

ture of t distributions with component-specific means and
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a

b

c

Fig. 2 Identification of batch surrogates. a Plate-specific eCDFs of the average log2 R ratio for a region on chr5 (155,475,886-155,488,649bp). b The
plate-specific eCDFs were grouped by Kolmogorov-Smirnov test statistics, forming batches. The batch-specific eCDFs after grouping plates (right).
The eCDFs between batches typically differed by a location shift, though here Batch 6 also captured samples with higher variance. c Single- and
multi-batch mixture models were evaluated at each CNP. Densities from the posterior predictive distributions overlay the histograms of the
3-component multi-batch model (left). Adjusted for batch, only three components were needed to fit the apparent deletion polymorphism. B allele
frequencies were used to genotype the mixture components. The mapping from the mixture component indices to copy number is indicated by
the arrows on the x-axis labels (right)
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a b

Fig. 3 Study site does not capture the major sources of technical variation. Hybridization intensities were available for four probes in a CNP region
on chr4 spanning 9,370,866 bp - 9,410,140 bp (CNP_051). Restricting our analysis to high quality samples, we used the first principal component
(PC1) as a one-dimensional summary of the 4 x 6,026 matrix of log2 R ratios. The density of the PC1 summaries marginally (black) and stratified by
study site (gray) are bimodal, suggesting a copy number polymorphism a. However, stratification of the PC1 summaries by grouping chemistry
plates with similar eCDFs reveals an obvious batch effect (b). For example, chemistry plates in group E comprised of 786 samples originating from all
nine study sites has a markedly different distribution than the 567 samples processed on group C chemistry plates

variances modeled hierarchically across batches (Fig. 2c).
Following the probabilistic assignment of samples to mix-
ture components, we genotyped the mixture components
using the available BAFs at SNPs (Fig. 2c). From the 263
CNV regions, 25 regions contained samples with dupli-
cations, 132 regions contained samples with deletions,
and 24 regions contained samples with deletions as well
as samples with duplications. Allele frequencies from the
genotyped duplications and deletions in the PanC4 con-
trols were consistent with percentages reported in the
1000 Genomes Project. We identified a median of 17
additional CNVs per sample by the mixture model that
were not identified by the HMM (Figures S4 and S5). On
average, CNVs spanned 6 SNPs (interquartile range (IQR):
5-8) and were 12.6kb in size (IQR: 10.9kb - 17.6kb).

For 85 of the regions with deletions, small log ratios
consistent with homozygous deletions appeared in a sub-
set of the identified batches. Multi-batch models fit
to these data require heavy-tails to accommodate the
extreme observations and the resulting mixture compo-
nents potentially capture different latent copy number
states between the batches. Rather than exclude these
observations, CNPBayes augments the observed data with
simulated deletions. For the small number of individuals
with likely germline homozygous deletions, their pos-
terior probabilities can be interpreted as having been
influenced by an empirically derived prior. Posterior prob-
abilities for the remaining mixture components tend to
be nearly equivalent to a model without augmentation fit
to a dataset excluding the rare observations. For example,
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the concordance of mixture component posterior proba-
bilities comparing a model with augmentation to a model
without augmentation that excluded 6 individuals with
likely germline homozygous deletions at CNP_121 was
near 1 (Figure S6).

Comparison to other software
Conceptually, our approach is most similar to CNVCALL
[9] as Cardin et al. model one-dimensional summaries of
CNV regions for each subject using a Bayesian hierarchi-
cal mixture of t distributions [9, 31]. Below, we compare
CNVCALL and CNPBayes at deletion and duplication
polymorphisms in the PanC4 study that cover a range of
data quality issues encountered in practice. When neces-
sary, we performed a stratified analysis on the low and
high quality samples. As CNVCALL does not interpret
the copy number of the mixture components identified,
we have labeled the copy number of their assigned com-
ponents using the approach described for CNPBayes. For
CNVCALL, we have used the first principal component as
a one-dimensional summary for the CNV regions as rec-
ommended. Finally, we compare these methods to a set of
simulations derived fromHapMap samples where the true
copy number is known.
PanC4 study
We performed a detailed analysis of four CNV regions

in the PanC4 study (CNP_121, CNP_128, CNP_100, and
CNP_240) that capture a range of data quality and copy
number states (Figures S6–S9). For CNP_121, CNPBayes
identified 5 batches in the high quality samples and a
single batch in the low quality samples (Figure S6). A
three component model was selected and the compo-
nents were mapped to copy numbers 0, 1, and 2 from
the BAFs as previously described, generating copy number
frequencies of 9, 422, and 7167 (Hardy Weinberg equi-
librium (HWE) χ2

1 =1.15, p=0.28). Of the 7598 samples,
17 individuals were not called by CNVCALL, including 8
individuals with a missing log2R ratio in the CNV region
and the 9 zero-copy individuals identified by CNPBayes
(HWE χ2

1 = 6.18, p = 0.01). For the remaining 7581 sam-
ples, the posterior probabilities were highly concordant
for both approaches. Similarly, CNP_128 is a deletion
polymorphism. No batch effects were detectable in either
the low or high quality data collections by CNPBayes
(Figure S7). CNVCALL discarded 181 individuals at this
locus, including 4 homozygous deletions identified by
CNPBayes. The observed counts for copy numbers 0,
1, and 2 from CNPBayes were 4, 317, and 7277 (HWE
χ2
1 = 0.08, p=0.77), while the corresponding counts for

CNVCALL were 0, 303, and 7,114 (χ2
1 = 3.23, p=0.07).

For CNP_100, CNPBayes identifies 6 batches in both the
low- and hiqh-quality samples (Figure S8) and detects a
duplication in the high quality samples but not for the
lower quality data. CNVCALL did not identify any copy

number alterations whether fit to all samples or when
restricted to the set of high quality samples. BAFs among
samples with the duplication identified by CNPBayes were
highly consistent with three copies. Finally, for CNP_240
CNPBayes identifies copy numbers 0-3 at frequencies 2,
228, 5757, and 39 (χ2

1 = 0.03, p = 0.87 for copy numbers
0, 1, and 2) while CNVCALL identifies only hemizygous
deletions (n=280) and diploid copy numbers (n = 5647)
(χ2

1 = 3.47, p = 0.06) (Figure S9). Overall, these anal-
yses indicate that for regions where the signal to noise
ratio is high, CNPBayes generates posterior probabilities
of the latent copy numbers that are highly concordant with
CNVCALL. Substantial differences in the two approaches
arise for rare CNVs and for CNVs where the mixture com-
ponents have greater overlap, often attributable to batch-
to-batch differences in technical variation that are more
flexibly modeled by CNPBayes. The CNPBayes assign-
ment of relatively rare, large negative log2R ratios to a copy
number zero state was consistent with expected frequen-
cies of a deletion allele segregating in the population.
Simulation
To benchmark the sensitivity and specificity of this

approach when the true genotypes were known, we
extracted high quality data from a subset of HapMap
phase III samples (n = 990) processed on 16 chemistry
plates and hybridized to Affymetrix 6.0 chips. A 109 kb
region on chr 4 containing 1 SNP and 53 nonpolymorphic
markers spans a deletion polymorphism with an allele
frequency near 22%. We increased the level of difficulty
for genotyping these samples by increasing the variance
and/or shifting the location of the probe-level data in a
subset of the chemistry plates. For each simulated dataset,
we fit both CNVCALL and CNPBayes. While we did not
provide the true batch labels to either method, CNPBayes
estimated the batches from the plate surrogates. With
no simulated batch effects, CNPBayes and CNVCALL
had nearly identical performance with near perfect sen-
sitivity and specificity (area under the receiver operator
characteristic curve (AUC) > 0.99). However, for simu-
lated datasets with batch effects in the mean or variance,
accuracy of CNVCALL decreased by an average of 25%
while performance characteristics of CNPBayes remained
qualitatively similar (Figure S10).

Riskmodel for pancreatic cancer
To evaluate whether changes in germline copy number
effect pancreatic cancer risk, we fit a Bayesian logistic
regression model at each CNV region. Uncertainty of the
copy number assignment for each participant was incor-
porated in the regression model by sampling the integer
copy number from a multinomial distribution parame-
terized by posterior probabilities from CNPBayes at each
scan of the MCMC. As case-control status was unevenly
distributed between the high and low data quality sample
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collections (χ2
1 =13.1, p=0.0003), the regression model

included an interaction between copy number and data
quality (Methods) as well as a single binary parame-
ter zc multiplying both of these terms that allows the
slopes to be exactly zero. The posterior mean of zc
provides an estimate of the probability of an associa-
tion with copy number (Fig. 4 and Table S2). Additional
covariates included age, gender, and the first three prin-
cipal components previously estimated from the SNP
genotypes [20].

Genome-wide posterior probabilities of association
between copy number and pancreatic cancer risk were
near zero for most CNV regions (Fig. 4a). For five CNV
regions with non-zero probabilities, we assessed the joint
distribution of the regression coefficients for the high and
low quality samples (Fig. 4b and c). Participants with two
copies of the Tumor Supressor Candidate 3, TUSC3, had
a 20% increased odds of pancreatic cancer compared to
individuals with germline hemizygous deletions in this
gene (90% credible interval (CI) for odds ratio: 1.01 - 1.39).

a

b

c

Fig. 4 Bayesian regression models for pancreatic cancer risk. To incorporate uncertainty of the copy number assignment from the low-level data,
the integer copy number was sampled from the subject-specific posterior probabilities provided by CNPBayes at each iteration of the MCMC. While
batch effects on CNV inference were already accounted for in the low and high quality sample collections, an imbalance of the pancreatic cancer
cases between these collections warranted a stratified model with an interaction between copy number and data quality and an indicator, zc ,
multiplying these coefficients that allowed the slopes to be exactly zero. a Posterior probabilities of association from the stratified model for CNV
regions across the genome. For regions where copy number inference was unaffected by data quality and associated with pancreatic cancer risk,
regression coefficients for the low and high quality collections were positively correlated and the posterior mean of zc (upper right corner) increased
in the more powerful unstratified analysis using all 7598 samples (b). By contrast, negatively correlated coefficients indicated an effect of data quality
on CNV inference confirmed by visual inspection and the appropriate follow-up analysis and estimated probability of association was limited to the
high quality sample collection (c)
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While the direction of this effect is inconsistent with
its putative role as a tumor suppressor, up-regulation of
TUSC3 and possible oncogenic roles for this gene have
been reported in cancers including non-small cell lung
cancer, colorectal, thyroid, and head and neck cancers
[32–35]. Among non-coding regions, we found that dele-
tions for a CNV region in 8q24 were associated with
a reduced risk of pancreatic cancer (90% CI: 1.09-1.59).
Chromosome 8q24 has been implicated in many can-
cers and is known to contain regulatory elements for the
tumor oncogeneMYC located at 128,748,315-128,753,680
bp [36]. We have previously demonstrated the associ-
ation of SNPs in this region with an increased risk of
pancreatic cancer [37, 38]. As copy number regression
coefficients at CNV regions spanning TUSC3 and near
MYC were positive and highly correlated for both the
low and high quality sample collections, an unstratified
analysis using all 7598 participants doubled the posterior
probability of association for these genes (Fig. 4b). Overall,
our approach provides conservative measures of the asso-
ciation between copy number and pancreatic cancer risk
across the genome, accounting for latent batch effects and
copy number uncertainty separately for samples where
data quality was more compromised.

Discussion
We performed a genome-wide analysis of germline copy
number variants in the largest study to date of pancre-
atic cancer, implementing approaches to correct for latent
batch effects and risk models that incorporate uncertainty
of the copy number estimates. As the batch effects we
identified were likely related to differences in PCR effi-
ciencies that can vary across the genome and between
groups of samples processed on different chemistry plates
within a single laboratory (not between study sites), we
identified and adjusted for batch effects in a region-
dependent manner in contrast to alternative methods.
Using this approach, nearly 70% of CNV regions ana-
lyzed had multiple batches that were related to chemistry
plates and not the individual laboratories that contributed
samples.
Using the methods outlined in this study, we found

that germline deletions of TUSC3 and near MYC were
more prevalent among participants without pancreatic
cancer. Germline deletions of these genes have not been
previously implicated in pancreatic cancer, though upreg-
ulation of expression of these genes have been implicated
in some cancers in an apparent tissue-dependent manner.
Although this study did not evaluate whether deletions at
these loci were well tagged by neighboring SNPs, phasing
the nearby SNPs would allow direct inference for whether
variation in copy number is associated with pancreatic
cancer risk among participants with the same SNP hap-
lotype [39, 40]. While we evaluated copy number at both

known and HMM-discoverable CNV regions for pancre-
atic cancer risk, more sensitive technologies for identify-
ing smaller CNV regions with potentially rare germline
CNVs among cancer patients are needed, and will not be
well tagged by neighboring SNPs. Whether mosaic copy
number alterations in hematopoietic cells could further
modulate risk has not been evaluated [41–44].
Finally, we assumed an additive model for integer copy

number and the log odds of cancer risk. Dominant and
recessive mechanisms of genotype-phenotype associa-
tions are possible and the evidence for these models using
Bayes factors could be averaged with weights reflecting
our a priori beliefs.

Conclusions
Statistical inference predicated onmeasures of abundance
such as DNA copy number are highly susceptible to batch
effects, and the sources of these effects are not generally
known. As studies become increasingly large-scale with
inevitable batch effects and heterogeneity in sample qual-
ity, the scalable approach provided by CNPBayes will be
helpful for modeling unwanted technical variation and
avoiding the potential confounding between batch effects
and copy number when evaluating disease risk.

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/10.1186/s12885-020-07304-3.

Additional file 1: Figure S1: Median absolute deviation and
autocorrelation of autosomal log2R ratios. Figure S2: Preprocessing and
quality control analyses. Figure S3: Frequency of CNV regions with 1 to 7
batches identified by grouping the eCDFs of the log2R summaries. Figure
S4: Number of additional CNVs identified from the Bayesian mixture model.
Figure S5: Technical variation within and between samples obscures
identification of hemizygous deletions. Figure S6: A deletion polymorphism
at CNP_121. Figure S7: A deletion polymorphism at CNP_128. Figure S8: A
duplication polymorphism at CNP_100. Figure S9: A CNV region with both
deletions and duplications evident in the high quality samples. Figure S10:
Performance of CNV detection methods on HapMap data.

Additional file 2: Supplemental Tables for Bayesian copy number
detection and association in large-scale studies.

Abbreviations
CNV: Copy number variant; HMM: Hidden Markov model; MCMC: Markov
Chain Monte Carlo; PanC4: Pancreatic cancer case-control consortium; SNP:
Single nucleotide polymorphism; ACF: Autocorrelation coefficient; eCDF:
Empirical cummulative distribution function; K-S: Kolmogorov-Smirnov; MB:
Multiple batches; SB: Single batch; MBP: Multiple batch pooled variance; SBP:
Single batch pooled variance; HWE: Hardy Weinberg equilibrium; BAF: B allele
frequency; PC: Principal component; IQR: Interquartile range; AUC: Area under
the receiver operator characteristic curve

Acknowledgments
We would like to thank Aravinda Chakravarti, Ann Oberg, Irene Orlow, and
members of our laboratories for critical review of this manuscript.

Authors’ contributions
Conceptualization, APK and RBS; Methodology, SC, DM, JC, GR, IR, APK, and
RBS; Contributing Data, PB, MD, SG, MGG, MMH, RJH, RCK, DL, LL, RN, SO, GP,
KGR, HR; Formal Analysis, SC, DM, JC, JF, and RBS; Review of Manuscript, all

https://doi.org/10.1186/s12885-020-07304-3


Cristiano et al. BMC Cancer          (2020) 20:856 Page 12 of 14

authors; Writing, SC, DM, JC, APK and RBS; Project Administration, APK and RBS;
Funding Acquisition, APK. All authors have read and approved the manuscript.

Funding
This work was supported in part by the US National Institutes of Health grants
5R01CA154823, CA006973, and CA062924. The funders did not have any
influence on any aspects of the study, including design, data collection,
analyses, interpretation, or writing of the manuscript.

Availability of data andmaterials
The PanC4 study is available under dbGap accession number phs000206.v5.p3.

Ethics approval and consent to participate
Each participating study obtained informed written consent from participants
and approval from their Institutional Review Board. This project was reviewed
by the Johns Hopkins School of Medicine IRB.

Consent for publication
Not applicable.

Competing interests
S.C. and R.B.S. are founders of Delfi Diagnostics. R.B.S also holds equity in Delfi
Diagnostics.

Author details
1Department of Biostatistics, Johns Hopkins Bloomberg School of Public
Health, Baltimore, MD, USA. 2Department of Oncology The Sidney Kimmel
Comprehensive Cancer Center, Johns Hopkins University School of Medicine,
Baltimore, MD, USA. 3Department of Epidemiology and Biostatistics, University
of California, San Francisco, San Francisco, CA, USA. 4Genetics Section,
International Agency for Research on Cancer, Lyon, France. 5Department of
Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore,
MD, USA. 6Department of Epidemiology and Biostatistics, Memorial Sloan
Kettering Cancer Center, 10065 New York, NY, USA. 7Lunenfeld-Tanenbaum
Research Institute of Mount Sinai Hospital, M5G 1x5 Toronto, Ontario, Canada.
8Department of Medicine, Johns Hopkins University School of Medicine,
Baltimore, MD, USA. 9Department of Pathology, Sol Goldman Pancreatic
Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD,
USA. 10Department of Epidemiology, Cancer Prevention & Population
Sciences, UT MD Anderson Cancer Center, 77030 Houston, TX, USA.
11Department of Gastroenterology, Hepatology, and Nutrition Service,
Memorial Sloan Kettering Cancer Center, 10065 New York, NY, USA.
12Department of Gastrointestinal Medical Oncology, University of Texas MD
Anderson Cancer Center, 77030 Houston, TX, USA. 13Department of Chronic
Disease Epidemiology, Yale School of Public Health, Yale Cancer Center, New
Haven, CT, USA. 14Population Health Department, QIMR Berghofer Medical
Research Institute, 4029 Brisbane, Australia. 15Department of Health Sciences
Research, Mayo Clinic College of Medicine, 55905 Rochester, MN, USA.

Received: 21 February 2020 Accepted: 17 August 2020

References
1. Marioni JC, Thorne NP, Valsesia A, Fitzgerald T, Redon R, Fiegler H,

Andrews TD, Stranger BE, Lynch AG, Dermitzakis ET, Carter NP, Tavaré S,
Hurles ME. Breaking the waves: improved detection of copy number
variation from microarray-based comparative genomic hybridization.
Genome Biol. 2007;8(10):228. https://doi.org/10.1186/gb-2007-8-10-r228.

2. Pugh TJ, Delaney AD, Farnoud N, Flibotte S, Griffith M, Li HI, Qian H,
Farinha P, Gascoyne RD, Marra MA. Impact of whole genome
amplification on analysis of copy number variants. Nucleic Acids Res.
2008;36(13):80. https://doi.org/10.1093/nar/gkn378.

3. Diskin SJ, Li M, Hou C, Yang S, Glessner J, Hakonarson H., Bucan M,
Maris JM, Wang K. Adjustment of genomic waves in signal intensities
from whole-genome SNP genotyping platforms. Nucleic Acids Res.
2008;36(19):126. https://doi.org/10.1093/nar/gkn556.

4. van de Wiel MA, Brosens R, Eilers PHC, Kumps C, Meijer GA, Menten B,
Sistermans E, Speleman F, Timmerman ME, Ylstra B. Smoothing waves in
array CGH tumor profiles. Bioinformatics (Oxford, England). 2009;25:
1099–104. https://doi.org/10.1093/bioinformatics/btp132.

5. Benjamini Y, Speed TP. Summarizing and correcting the GC content bias
in high-throughput sequencing. Nucleic Acids Res. 2012;40(10):72.
https://doi.org/10.1093/nar/gks001.

6. Leo A, Walker AM, Lebo MS, Hendrickson B, Scholl T, Akmaev VR. A
GC-wave correction algorithm that improves the analytical performance
of aCGH. J Mol Diagn JMD. 2012;14:550–9. https://doi.org/10.1016/j.
jmoldx.2012.06.002.

7. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S,
Hubbell E, Veitch J, Collins PJ, Darvishi K, Lee C, Nizzari MM, Gabriel SB,
Purcell S, Daly MJ, Altshuler D. Integrated genotype calling and
association analysis of SNPs, common copy number polymorphisms and
rare CNVs. Nature Genetics. 2008;40(10):1253–60. https://doi.org/10.1038/
ng.237.

8. Barnes C, Plagnol V, Fitzgerald T, Redon R, Marchini J, Clayton D, Hurles
ME. Nature Genetics. 2008;40(10):1245–52. https://doi.org/10.1038/ng.206.

9. Cardin N, Holmes C, W.T.C.C.C, Donnelly P, Marchini J. Bayesian
hierarchical mixture modeling to assign copy number from a targeted
cnv array. Genet Epidemiol. 2011;35(6):536–548. https://doi.org/10.1002/
gepi.20604.

10. Kumasaka N, Fujisawa H, Hosono N, Okada Y, Takahashi A, Nakamura Y,
Kubo M, Kamatani N. Platinumcnv: a bayesian gaussian mixture model
for genotyping copy number polymorphisms using snp array signal
intensity data. Genet Epidemiol. 2011;35(8):831–44. https://doi.org/10.
1002/gepi.20633.

11. Fromer M, Moran JL, Chambert K, Banks E, Bergen SE, Ruderfer DM,
Handsaker RE, McCarroll SA, O’Donovan MC, Owen M. J., Kirov G,
Sullivan PF, Hultman CM, Sklar P, Purcell SM. Discovery and statistical
genotyping of copy-number variation from whole-exome sequencing
depth. Am J Hum Genet. 2012;91(4):597–607. https://doi.org/10.1016/j.
ajhg.2012.08.005.

12. Packer JS, Maxwell EK, O’Dushlaine C, Lopez AE, Dewey FE,
Chernomorsky R, Baras A, Overton JD, Habegger L, Reid JG. CLAMMS: a
scalable algorithm for calling common and rare copy number variants
from exome sequencing data. Bioinformatics. 2016;32(1):133–5. https://
doi.org/10.1093/bioinformatics/btv547.

13. Leek JT, Storey JD. Capturing heterogeneity in gene expression studies
by surrogate variable analysis. PLoS Genet. 2007;3(9):161. https://doi.org/
10.1371/journal.pgen.0030161.

14. Costain G, Walker S, Argiropoulos B, Baribeau DA, Bassett AS, Boot E,
Devriendt K, Kellam B, Marshall CR, Prasad A, Serrano MA, Stavropoulos
DJ, Twede H, Vermeesch JR, Vorstman J. A. S., Scherer SW. Rare copy
number variations affecting the synaptic gene DMXL2 in
neurodevelopmental disorders. J Neurodevelopmental Disord. 2019;11:3.
https://doi.org/10.1186/s11689-019-9263-3.

15. Kushima I, Aleksic B, Nakatochi M, Shimamura T, Okada T, Uno Y,
Morikawa M, Ishizuka K, Shiino T, Kimura H, Arioka Y, Yoshimi A,
Takasaki Y, Yu Y, Nakamura Y, Yamamoto M, Iidaka T, Iritani S, Inada T,
Ogawa N, Shishido E, Torii Y, Kawano N, Omura Y, Yoshikawa T,
Uchiyama T, Yamamoto T, Ikeda M, Hashimoto R, Yamamori H, Yasuda
Y, Someya T, Watanabe Y, Egawa J, Nunokawa A, Itokawa M, Arai M,
Miyashita M, Kobori A, Suzuki M, Takahashi T, Usami M, Kodaira M,
Watanabe K, Sasaki T, Kuwabara H, Tochigi M, Nishimura F, Yamasue H,
Eriguchi Y, Benner S, Kojima M, Yassin W, Munesue T, Yokoyama S,
Kimura R, Funabiki Y, Kosaka H, Ishitobi M, Ohmori T, Numata S,
Yoshikawa T, Toyota T, Yamakawa K, Suzuki T, Inoue Y, Nakaoka K, Goto
Y-I, Inagaki M, Hashimoto N, Kusumi I, Son S, Murai T, Ikegame T,
Okada N, Kasai K, Kunimoto S, Mori D, Iwata N, Ozaki N. Comparative
analyses of copy-number variation in autism spectrum disorder and
schizophrenia reveal etiological overlap and biological insights. Cell Rep.
2018;24:2838–56. https://doi.org/10.1016/j.celrep.2018.08.022.

16. Coe BP, Stessman HAF, Sulovari A, Geisheker MR, Bakken TE, Lake AM,
Dougherty JD, Lein ES, Hormozdiari F, Bernier RA, Eichler EE.
Neurodevelopmental disease genes implicated by de novo mutation and
copy number variation morbidity. Nat Genet. 2019;51:106–16. https://doi.
org/10.1038/s41588-018-0288-4.

17. Huang K-L, Mashl RJ, Wu Y, Ritter DI, Wang J, Oh C., Paczkowska M,
Reynolds S, Wyczalkowski MA, Oak N, Scott A. D., Krassowski M,
Cherniack AD, Houlahan KE, Jayasinghe R, Wang L-B, Zhou DC, Liu D,
Cao S, Kim YW, Koire A, McMichael JF, Hucthagowder V, Kim T-B, Hahn
A, Wang C, McLellan MD, Al-Mulla F, Johnson KJ, Network CGAR,
Lichtarge O, Boutros PC, Raphael B, Lazar AJ, Zhang W, Wendl MC,

https://doi.org/10.1186/gb-2007-8-10-r228
https://doi.org/10.1093/nar/gkn378
https://doi.org/10.1093/nar/gkn556
https://doi.org/10.1093/bioinformatics/btp132
https://doi.org/10.1093/nar/gks001
https://doi.org/10.1016/j.jmoldx.2012.06.002
https://doi.org/10.1016/j.jmoldx.2012.06.002
https://doi.org/10.1038/ng.237
https://doi.org/10.1038/ng.237
https://doi.org/10.1038/ng.206
https://doi.org/10.1002/gepi.20604
https://doi.org/10.1002/gepi.20604
https://doi.org/10.1002/gepi.20633
https://doi.org/10.1002/gepi.20633
https://doi.org/10.1016/j.ajhg.2012.08.005
https://doi.org/10.1016/j.ajhg.2012.08.005
https://doi.org/10.1093/bioinformatics/btv547
https://doi.org/10.1093/bioinformatics/btv547
https://doi.org/10.1371/journal.pgen.0030161
https://doi.org/10.1371/journal.pgen.0030161
https://doi.org/10.1186/s11689-019-9263-3
https://doi.org/10.1016/j.celrep.2018.08.022
https://doi.org/10.1038/s41588-018-0288-4
https://doi.org/10.1038/s41588-018-0288-4


Cristiano et al. BMC Cancer          (2020) 20:856 Page 13 of 14

Govindan R, Jain S, Wheeler D, Kulkarni S, Dipersio JF, Reimand J,
Meric-Bernstam F, Chen K, Shmulevich I, Plon SE, Chen F, Ding L.
Pathogenic germline variants in 10,389 adult cancers. Cell. 2018;173:
355–37014. https://doi.org/10.1016/j.cell.2018.03.039.

18. Lucito R, Suresh S, Walter K, Pandey A, Lakshmi B, Krasnitz A, Sebat J,
Wigler M, Klein AP, Brune K, Palmisano E, Maitra A, Goggins M, Hruban
RH. Copy-number variants in patients with a strong family history of
pancreatic cancer. Cancer Biol Ther. 2007;6:1592–9.

19. Willis JA, Mukherjee S, Orlow I, Viale A, Offit K, Kurtz RC, Olson SH, Klein
RJ. Genome-wide analysis of the role of copy-number variation in
pancreatic cancer risk. Front Genet. 2014;5:29. https://doi.org/10.3389/
fgene.2014.00029.

20. Childs EJ, Mocci E, Campa D, Bracci PM, Gallinger S, Goggins M, Li D,
Neale RE, Olson SH, Scelo G, Amundadottir LT, Bamlet WR, Bijlsma MF,
Blackford A, Borges M, Brennan P, Brenner H, Bueno-de-Mesquita HB,
Canzian F, Capurso G, Cavestro GM, Chaffee KG, Chanock SJ, Cleary SP,
Cotterchio M, Foretova L, Fuchs C, Funel N, Gazouli M, Hassan M,
Herman JM, Holcatova I, Holly EA, Hoover RN, Hung RJ, Janout V, Key
TJ, Kupcinskas J, Kurtz RC, Landi S, Lu L., Malecka-Panas E, Mambrini A,
Mohelnikova-Duchonova B, Neoptolemos JP, Oberg AL, Orlow I,
Pasquali C, Pezzilli R, Rizzato C, Saldia A, Scarpa A, Stolzenberg-Solomon
RZ, Strobel O, Tavano F, Vashist YK, Vodicka P, Wolpin BM, Yu H,
Petersen GM, Risch HA, Klein AP. Common variation at 2p13.3, 3q29,
7p13 and 17q25.1 associated with susceptibility to pancreatic cancer. Nat
Genet. 2015;47:911–6. https://doi.org/10.1038/ng.3341.

21. Scharpf RB, Parmigiani G, Pevsner J, Ruczinski I. Hidden Markov models
for the assessment of chromosomal alterations using high-throughput
SNP arrays. Ann Appl Stat. 2008;2(2):687–713.

22. Pinto D, Darvishi K, Shi X, Rajan D, Rigler D, Fitzgerald T, Lionel AC,
Thiruvahindrapuram B, Macdonald JR, Mills R, Prasad A, Noonan K,
Gribble S, Prigmore E, Donahoe PK, Smith RS, Park JH, Hurles ME, Carter
NP, Lee C, Scherer SW, Feuk L. Comprehensive assessment of
array-based platforms and calling algorithms for detection of copy
number variants. Nat Biotechnol. 2011;29(6):512–20.

23. Peel D, McLachlan GJ. Robust mixture modelling using the t distribution.
Stat Comput. 2000;10(4):339–48.

24. Vounatsou P, Smith AFM. Simulation-based bayesian inferences for
two-variance components linear models. J Stat Plan Infer. 1997;59(1):
139–61. https://doi.org/10.1016/S0378-3758(96)00093-6.

25. Lin TI, Lee JC, Ni HF. Bayesian analysis of mixture modelling using the
multivariate t distribution. Stat Comput. 2004;14(2):119–30. https://doi.
org/10.1023/B:STCO.0000021410.33077.10.

26. Chib S. Marginal likelihood from the Gibbs output. J Am Stat Assoc.
1995;90(432):1313–21. https://doi.org/10.1080/01621459.1995.10476635.

27. Gelman A, Rubin DB. Inference from iterative simulation using multiple
sequences. Stat Sci. 1992;7(4):457–472. https://doi.org/10.1214/ss/
1177011136.

28. International HapMap Consortium, Frazer KA, Ballinger DG, Cox DR,
Hinds DA, Stuve LL, Gibbs RA, Belmont JW, Boudreau A, Hardenbol P,
Leal SM, Pasternak S, Wheeler DA, Willis TD, Yu F, Yang H, Zeng C, Gao
Y, Hu H, Hu W, Li C., Lin W, Liu S, Pan H, Tang X, Wang J, Wang W, Yu
J, Zhang B, Zhang Q, Zhao H, Zhao H, Zhou J, Gabriel SB, Barry R,
Blumenstiel B, Camargo A, Defelice M, Faggart M, Goyette M, Gupta S,
Moore J, Nguyen H, Onofrio RC, Parkin M, Roy J, Stahl E, Winchester E,
Ziaugra L, Altshuler D, Shen Y, Yao Z, Huang W, Chu X., He Y, Jin L, Liu
Y, Shen Y, Sun W, Wang H, Wang Y, Wang Y, Xiong X, Xu L, Waye
MMY, Tsui S. K. W., Xue H, Wong JT-F, Galver LM, Fan J-B, Gunderson K,
Murray SS, Oliphant AR, Chee MS, Montpetit A, Chagnon F, Ferretti V,
Leboeuf M, Olivier J-F, Phillips MS, Roumy S, Sall-e C, Verner A, Hudson
TJ, Kwok P-Y, Cai D, Koboldt DC, Miller RD, Pawlikowska L, Taillon-Miller
P, Xiao M, Tsui L-C, Mak W, Song YQ, Tam PKH, Nakamura Y, Kawaguchi
T, Kitamoto T, Morizono T, Nagashima A, Ohnishi Y, Sekine A, Tanaka T,
Tsunoda T, Deloukas P, Bird CP, Delgado M, Dermitzakis ET, Gwilliam R,
Hunt S, Morrison J, Powell D, Stranger BE, Whittaker P, Bentley DR, Daly
MJ, de Bakker PIW, Barrett J, Chretien YR, Maller J, McCarroll S, Patterson
N, Pe’er I, Price A, Purcell S, Richter DJ, Sabeti P, Saxena R, Schaffner SF,
Sham PC, Varilly P, Altshuler D, Stein LD, Krishnan L, Smith AV,
Tello-Ruiz MK, Thorisson GA, Chakravarti A, Chen PE, Cutler DJ, Kashuk
CS, Lin S, Abecasis GR, Guan W, Li Y, Munro HM, Qin ZS, Thomas DJ,
McVean G, Auton A, Bottolo L, Cardin N, Eyheramendy S, Freeman C,
Marchini J, Myers S, Spencer C, Stephens M, Donnelly P, Cardon LR,

Clarke G, Evans DM, Morris AP, Weir BS, Tsunoda T, Mullikin JC, Sherry
ST, Feolo M, Skol A, Zhang H, Zeng C, Zhao H, Matsuda I, Fukushima Y,
Macer DR, Suda E, Rotimi CN, Adebamowo CA, Ajayi I, Aniagwu T,
Marshall PA, Nkwodimmah C, Royal CDM, Leppert MF, Dixon M, Peiffer
A, Qiu R, Kent A, Kato K, Niikawa N, Adewole IF, Knoppers BM, Foster
MW, Clayton EW, Watkin J, Gibbs RA, Belmont JW, Muzny D, Nazareth
L, Sodergren E, Weinstock GM, Wheeler DA, Yakub I, Gabriel SB,
Onofrio RC, Richter DJ, Ziaugra L, Birren BW, Daly MJ, Altshuler D,
Wilson RK, Fulton LL, Rogers J, Burton J, Carter NP, Clee CM, Griffiths M,
Jones MC, McLay K, Plumb RW, Ross MT, Sims SK, Willey DL, Chen Z,
Han H., Kang L, Godbout M, Wallenburg JC, L’Archev-que P, Bellemare
G., Saeki K, Wang H, An D, Fu H, Li Q, Wang Z, Wang R, Holden AL,
Brooks LD, McEwen JE, Guyer MS, Wang VO, Peterson JL, Shi M, Spiegel
J, Sung LM, Zacharia LF, Collins FS, Kennedy K, Jamieson R, Stewart J. A
second generation human haplotype map of over 3.1 million SNPs.
Nature. 2007;449(7164):851–61. https://doi.org/10.1038/nature06258.

29. Plummer M. JAGS: A program for analysis of Bayesian graphical models
using Gibbs sampling. Proceedings of the third international workshop
on distributed statistical computing. 2003;124(125.10):1–10.

30. 1000 Genomes Project Consortium, Auton A, Brooks L, Durbin R,
Garrison E, Kang H, Korbel J, Marchini J, McCarthy S, McVean G,
Abecasis G. A global reference for human genetic variation. Nature.
2015;526(7571):68–74. https://doi.org/10.1038/nature15393.

31. Wellcome Trust Case Control Consortium, Craddock N, Hurles ME,
Cardin N., Pearson RD, Plagnol V, Robson S, Vukcevic D, Barnes C,
Conrad DF, Giannoulatou E, Holmes C, Marchini JL, Stirrups K, Tobin
MD, Wain LV, Yau C, Aerts J, Ahmad T, Andrews T. D, Arbury H,
Attwood A, Auton A, Ball SG, Balmforth AJ, Barrett JC, Barroso I, Barton
A, Bennett AJ, Bhaskar S, Blaszczyk K, Bowes J, Brand OJ, Braund PS,
Bredin F, Breen G, Brown MJ, Bruce IN, Bull J, Burren OS, Burton J,
Byrnes J, Caesar S, Clee CM, Coffey AJ, Connell JMC, Cooper JD,
Dominiczak AF, Downes K, Drummond H. E., Dudakia D, Dunham A,
Ebbs B, Eccles D, Edkins S, Edwards C, Elliot A, Emery P, Evans DM,
Evans G, Eyre S, Farmer A, Ferrier IN, Feuk L, Fitzgerald T, Flynn E,
Forbes A, Forty L, Franklyn JA, Freathy RM, Gibbs P, Gilbert P, Gokumen
O, Gordon-Smith K, Gray E, Green E, Groves CJ, Grozeva D, Gwilliam R,
Hall A, Hammond N, Hardy M, Harrison P, Hassanali N, Hebaishi H,
Hines S, Hinks A, Hitman GA, Hocking L, Howard E, Howard P, Howson
JMM, Hughes D, Hunt S, Isaacs JD, Jain M, Jewell DP, Johnson T, Jolley
JD, Jones IR, Jones LA, Kirov G, Langford CF, Lango-Allen H, Lathrop
GM, Lee J, Lee KL, Lees C, Lewis K, Lindgren CM, Maisuria-Armer M,
Maller J, Mansfield J, Martin P, Massey DCO, McArdle WL, McGuffin P,
McLay KE, Mentzer A, Mimmack ML, Morgan AE, Morris AP, Mowat C,
Myers S, Newman W, Nimmo ER, O’Donovan MC, Onipinla A, Onyiah I,
Ovington NR, Owen MJ, Palin K, Parnell K, Pernet D, Perry JRB, Phillips
A, Pinto D, Prescott NJ, Prokopenko I, Quail MA, Rafelt S, Rayner NW,
Redon R, Reid DM, Renwick, Ring SM, Robertson N, Russell E, St Clair D,
Sambrook JG, Sanderson JD, Schuilenburg H, Scott CE, Scott R, Seal S,
Shaw-Hawkins S, Shields BM, Simmonds MJ, Smyth DJ,
Somaskantharajah E, Spanova K., Steer S, Stephens J, Stevens HE, Stone
MA, Su Z, Symmons DPM, Thompson JR, Thomson W, Travers ME,
Turnbull C, Valsesia A, Walker M, Walker NM, Wallace C, Warren-Perry M,
Watkins NA, Webster J, Weedon MN, Wilson AG, Woodburn M,
Wordsworth BP, Young AH, Zeggini E, Carter NP, Frayling TM, Lee C,
McVean G, Munroe PB, Palotie A, Sawcer SJ, Scherer SW, Strachan DP,
Tyler-Smith C, Brown MA, Burton PR, Caulfield MJ, Compston A, Farrall
M, Gough SCL, Hall AS, Hattersley AT, Hill AVS, Mathew CG, Pembrey
M, Satsangi J, Stratton MR, Worthington J, Deloukas P, Duncanson A,
Kwiatkowski D. P., McCarthy MI, Ouwehand W, Parkes M, Rahman N,
Todd JA, Samani NJ, Donnelly P. Genome-wide association study of CNVs
in 16,000 cases of eight common diseases and 3,000 shared controls.
Nature. 2010;464(7289):713–20. https://doi.org/10.1038/nature08979.

32. Gutiérrez VF, Marcos C. l., Llorente JL, Guervós MA, Iglesias FD, Tamargo
LA, Hermsen M. Genetic profile of second primary tumors and
recurrences in head and neck squamous cell carcinomas. Head Neck.
2012;34:830–9. https://doi.org/10.1002/hed.21824.

33. Gu Y, Wang Q, Guo K, Qin W, Liao W, Wang S, Ding Y, Lin J. Tusc3
promotes colorectal cancer progression and epithelial-mesenchymal
transition (emt) through wnt/-catenin and mapk signalling. J Pathol.
2016;239:60–71. https://doi.org/10.1002/path.4697.

https://doi.org/10.1016/j.cell.2018.03.039
https://doi.org/10.3389/fgene.2014.00029
https://doi.org/10.3389/fgene.2014.00029
https://doi.org/10.1038/ng.3341
https://doi.org/10.1016/S0378-3758(96)00093-6
https://doi.org/10.1023/B:STCO.0000021410.33077.10
https://doi.org/10.1023/B:STCO.0000021410.33077.10
https://doi.org/10.1080/01621459.1995.10476635
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1038/nature06258
https://doi.org/10.1038/nature15393
https://doi.org/10.1038/nature08979
https://doi.org/10.1002/hed.21824
https://doi.org/10.1002/path.4697


Cristiano et al. BMC Cancer          (2020) 20:856 Page 14 of 14

34. Gu Y, Pei X, Ren Y, Cai K, Guo K, Chen J, Qin W, Lin M, Wang Q, Tang
N, Cheng Z, Ding Y, Lin J. Oncogenic function of tusc3 in non-small cell
lung cancer is associated with hedgehog signalling pathway. Biochim
Biophys Acta Mol Basis Dis. 2017;1863:1749–60. https://doi.org/10.1016/j.
bbadis.2017.05.005.
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